
(DRAFT)

A Consolidated Namespace for Network
Applications, Developers, Administrators
and Users

Miika Komu

August 12, 2012

Abstract

The current Internet is founded on the TCP/IP architecture that was

originally designed around machines rather than humans. In the TCP/IP

architecture, computers are named and communicate using numerical IP

addresses rather than symbolic ones. The numerical addresses were used

pervasively at all layers of the networking, until symbolic addresses were

added to the architecture. Today, most the users access Internet services

directly using symbolic host names using the DNS extensions or indirectly

by using key words for search engines. However, IP addresses still remain

pervasive as they are employed throughout the networking stack. Even

network applications are bound to use them either explicitly or implicitly.

This pervasiveness is a source of inflexibility as the TCP/IP architecture

is reused in new contexts for which it was not designed for. On the hand,

the wild success of the Internet has drawn large financial investments

around it. Consequently, even conservative improvements to its ossified

design can face a difficult deployment path.

In this dissertation, we examine a number of legacy-compatible solu-

tions to three challenges in the TCP/IP architecture. The first challenge

of non-persistent addressing stems from the reuse of IP addresses at net-

work, transport and application layers. While this simplified the naming

model of the original TCP/IP architecture, it disrupts TCP streams when

the topological location of the mobile device changes. The same phenom-

ena occurs when a user switches between, e.g., WLAN and cellular con-

nectivity in a mobile handset. As other causes for non-persistent address-

ing, Internet transparency is lost as NAT devices are based on private

address realms and site renumbering is difficult as addresses are hard

coded into various configurations. As the second challenge, heterogeneous

addressing as introduced by IPv6 complicates addressing of hosts and the

networking logic of applications. As the third challenge, IP addresses are

easy to forge and measures to secure addressing are needed.

A consolidated namespace meets all of the aspects of three high-level

challenges. From the surveyed solutions, we have compared five promi-

nent solutions to fulfill the requirements for such a namespace and chosen

Host Identity Protocol (HIP) for empirical evaluation. As other work ex-

ists in this area, our work focuses on application layer issues as it has re-

mained relatively unexplored. The concrete research problems are three

fold. First, we revisit some aspects of the challenges for consolidated nam-

ing at the application layer to understand the impact of the problems.

Then, we implement improvements to HIP to better meet the goals for

consolidated naming for end-users, network application developers and

network administrators. Thirdly, we design, develop and analyze tech-

nical improvements to HIP in order to facilitate its adoption and deploy-

ment.

ii

Tiivistelmä

XX TODO

iv

Preface

XX TODO

Helsinki, August 12, 2012,

Miika Komu

v

Preface

vi

Contents

Preface v

Contents vii

List of Publications ix

1. Introduction 3

1.1 Problem and Scope . 4

1.2 Methodology . 7

1.3 Contributions . 8

1.4 Author’s Contributions . 11

1.5 Structure of the Thesis . 13

2. Challenges and Solutions in the TCP/IP Architecture 15

2.1 Non-Persistent Addressing . 16

2.1.1 Challenges . 16

2.1.2 Solutions . 20

2.2 Heterogeneous Addressing . 38

2.2.1 Challenges . 38

2.2.2 Solutions . 39

2.3 Insecure Addressing . 41

2.3.1 Challenges . 42

2.3.2 Solutions . 42

2.4 Deployment Considerations 49

2.5 Host Identity Protocol . 50

2.5.1 Persistent Identifiers 50

2.5.2 Heterogenous Addressing 54

2.5.3 Secure Addressing . 55

2.6 Summary and Comparison . 57

vii

Contents

3. A Consolidated Namespace for Network Applications, De-

velopers, Administrators and Users 63

3.1 Revisiting the Challenges for Network Applications 63

3.2 HIP as a Consolidated Namespace for Network Applications 65

3.3 Impact of HIP to End-users 68

3.4 Deployment Aspects . 69

3.5 Summary and Lessons Learned 73

3.6 Future Directions . 76

4. Conclusions 79

Bibliography 85

Publications 103

viii

List of Publications

This thesis consists of an overview and of the following publications which

are referred to in the text by their Roman numerals.

I Miika Komu, Samu Varjonen, Sasu Tarkoma and Andrei Gurtov. Sock-

ets and Beyond: Assessing the Source Code of Network Applications.

Linux Symposium, Proceedings of Ottawa Linux Symposium, Technical

Paper, Ottawa, Canada, July 2012.

II Miika Komu, Sasu Tarkoma, Jaakko Kangasharju and Andrei Gurtov.

Applying a Cryptographic Namespace to Applications. In Dynamic In-

terconnection of Networks Workshop (DIN’05), Proceedings of the 1st

ACM Workshop on Dynamic Interconnection of Networks (co-located

with Mobicom 2005 Conference), Cologne, Germany, pp. 23-27, ISBN

1-59593-144-9, September 2005.

III Miika Komu, Sasu Tarkoma and Andrey Lukyanenko. Mitigation of

Unsolicited Traffic Across Domains with Host Identities and Puzzles. In

15th Nordic Conference on Secure IT Systems (NordSec 2010), Springer

Lecture Notes in Computer Science, Volume 7127, pp. 33-48, ISBN 978-

3-642-27936-2, Espoo, Finland, October 2010.

IV Janne Lindqvist, Essi Vehmersalo, Miika Komu and Jukka Manner.

Enterprise Network Packet Filtering for Mobile Cryptographic Identi-

ties. International Journal of Handheld Computing Research (IJHCR),

Volume 1, Issue 1, pp. 79-94, ISSN 1947-9158, January 2010.

ix

List of Publications

V Miika Komu and Janne Lindqvist. Leap-of-Faith Security is Enough

for IP Mobility. In Consumer Communications and Networking Confer-

ence (CCNC’09), Proceedings of the 6th IEEE Conference on Consumer

Communications and Networking Conference, Las Vegas, pp. 830-834,

ISBN 978-1-4244-2308-8, February 2009.

VI Kristiina Karvonen, Miika Komu and Andrei Gurtov. Usable Security

Management with Host Identity Protocol. In Computer Systems and

Applications (AICCSA’09), Proceedings of the Seventh ACS/IEEE Inter-

national Conference on Computer Systems and Applications, Rabat, pp.

279 - 286, ISBN 978-1-4244-3807-5, May 2009.

x

List of Abbreviations

6RD IPv6 Rapid Deployment on IPv4 Infrastructures 39

ALG Application-Level Gateway . 34

API Application Programming Interface . 5

APR Aggregation Point Router . 31

ARP Address Resolution Protocol . 26

AS Autonomous System . 28

BGP Border Gateway Protocol . 28

BTNS Better Than Nothing Security . 47

BTMM Back to My Mac . 58

CA Certificate Authority . 44

CAPTCHA Completely Automated Public Turing test to tell Computers
and Humans Apart . 48

CGA Cryptographically Generated Address . 33

DoA Delegation-oriented Architecture . 36

DHT Distributed Hash Table . 26

DCCP Datagram Congestion Control Protocol . 70

DDoS Distributed Denial of Service . 48

DFZ Default-Free Zone . 22

DH Diffie-Hellman . 46

DHCP Dynamic Host Configuration Protocol . 18

DNS Domain Name System. 10

DNSSEC Domain Name System Security Extensions 10

DoS Denial of Service . 48

DSMIPv4 Dual Stack Mobile IPv4. .24

DSMIPv6 Dual Stack Mobile IPv6. .24

dTLS Datagram Transport Layer Security . 45

DTN Delay Tolerant Networking . 7

xi

List of Abbreviations

ECC Elliptic Curve Cryptography . 50

EUI Extended Unique Identifier . 59

GSE Global, Site, and End-system address elements 32

FARA Forwarding directive, Association and Rendezvous Architecture26

FIB Forwarding Information Base . 31

FQDN Fully Qualified Domain Name. .17

FTP File Transfer Protocol .19

HI Host Identifier . 51

HIP Host Identity Protocol . 4

HIT Host Identity Tag . 51

HMAC Hash-based message authentication code . 52

HTTP Hypertext Transfer Protocol . 19

i3 Internet Indirection Infrastructure . 26

IAB Internet Architecture Board. .20

IBC Identity-based Cryptography. .44

ICE Interactive Connectivity Establishment. .35

IETF Internet Engineering Task Force. .9

IKE Internet Key Exchange. .25

ILNP Identifier-Locator Network Protocol . 26

IPsec Internet Protocol security . 8

ISP Internet Service Provider . 4

LIN6 Location Independent Networking for IPv6. .25

LISP Location-Identifier Separation Protocol .32

LoF Leap of Faith . 46

LSI Local-Scope Identifier. .51

LTS Long-Term Support (Ubuntu) . 69

MAC Media Access Control . 32

MIF Multiple Interfaces. .64

MobileIP Mobile IPv4 or IPv6 . 49

MobIKE Mobile Internet Key Exchange . 47

MPLS Multiprotocol Label Switching (MPLS) . 40

MPTCP Multipath TCP. .28

MTU Maximum Transfer Unit . 23

NAT Network Address Translation. .4

NAT-PT Network Address Translation/Protocol Translation 40

NBS Name-based Sockets . 40

xii

List of Abbreviations

P2P Peer-to-peer . 18

P2P-SIP Peer-to-peer Session Initiation Protocol . 9

PI Provider-independent . 22

PA Provider-allocated . 22

PCP Port Control Protocol . 34

PKI Public Key Infrastructure . 44

PLA Packet Level Authentication. .48

PRNG Pseudo-Random Number Generator. .65

QoS Quality of Service . 22

RFC Request for Comments . 19

RTCWEB Real Time Communication on the Web . 35

SA Security Association . 47

SAVA Source Address Validation Architecture . 43

SCTP Stream Control Transmission Protocol. .28

SEND SEcure Neighbor Discovery . 42

SHIM6 Site Multihoming for IPv6 . 28

SMTP Simple Mail Transfer Protocol . 71

SIP Session Initiation Protocol .27

SLP Service Location Protocol . 34

SRV Service Record . 36

SSO Single Sign-On . 44

SP Security Policy . 47

SPI Security Parameter Index . 21

SSL Secure Sockets Layer . 10

SSH Secure Shell . 10

STUN Session Traversal Utilities for NAT. .35

TLS Transport Layer Security . 10

TPM Trusted Platform Module . 44

TTL Time To Live . 30

TTP Trusted Third Party . 44

TURN Traversal Using Relay NAT . 35

UDP User Datagram Protocol

UIA Unmanaged Internet Architecture . 65

ULA Unique Local Address . 30

uPnP Universal Plug and Play . 34

URI Universal Resource Identifier . 37

xiii

List of Abbreviations

URL Universal Resource Locator . 17

VLAN Virtual LAN . 42

VPN Virtual Private Network . 9

WLAN Wireless LAN . 18

WPA2 Wi-Fi Protected Access version 2. .44

1

List of Abbreviations

2

1. Introduction

The Internet has grown beyond its original expectations but its design

architecture has remained relatively static. Particularly, its IP-based ad-

dressing model has remained the same even despite of the evolution of

network devices. For instance, modern smart phones are equipped with

multiple network access technologies and portable devices (e.g. laptops

and tablets) traverse between multiple networks. On the other hand, IPv4

address depletion introduced NAT devices that have created problems for

end-to-end connectivity. IPv6 was designed to reintroduce end-to-end con-

nectivity but but the protocol has been adopted slowly, possibly due to

additional complexity to access control in firewalls, network application

developers and even end-users.

Many of the individual challenges in the Internet addressing architec-

ture are solved by a number different, complex and possibly incompati-

ble “band-aid” solutions. Sometimes application developers solve redun-

dantly some of the challenges at the application layer as the network stack

or utility libraries are missing the required functionality.

In this dissertation, we propose to extend the addressing architecture of

the Internet to consolidate it for application developers, network admin-

istrators and end-users. The goal is to explore the limits of the TCP/IP

architecture in backward-compatible manner while designing for forward

compatibility. To find a balance between a “band-aid” and “clean-slate” so-

lution, we suggest “hip arthroplasty” to the Internet architecture to meet

the present challenges in a consolidated way.

By consolidation1 of the addressing architecture, we refer to tackling of

three challenges: non-persistent, heterogeneous and insecure addressing.

To mention a few examples, non-persistence means that the addresses

of hosts are topologically dependent and the basic TCP/IP architecture

1The term was briefly used, e.g., in RFC [49, p. 4] but here we extend the cover-
age of the term beyond site renumbering

3

Introduction

does not provide generic support for topologically-independent addressing

for mobile or multihoming capable devices. Non-persistence also includes

renumbering of a site when changing Internet Service Provider (ISP) [49]

or Internet transparency [48], that is, all devices cannot successfully reach

the other devices as Network Address Translation (NAT) and firewall

middleboxes block some of the data flows. Heterogeneous addressing is

caused by the introduction of IPv6; applications have to be written to sup-

port two address families. Insecure addressing refers to the weak security

properties of IP addresses that can be forged as they provide no security

per se. As a fourth challenge, we also take into count the deployment of

protocol architectures from a technical perspective [215, 214].

We argue that the challenges originate from the design of the network-

layer addresses. Despite of higher-level naming as supported by DNS,

applications have to use addresses and, hence, inherit their limitations.

We present a number of alternative solutions to IP addressing but the

experimentation is based on one particular architecture. Host Identity

Protocol (HIP) was chosen as the empirical evaluation tool. In nutshell,

the standardized protocol offers a cryptographic identity for end-hosts

that isolates the application and transport layers from the fluctuations

of the underlying network topology in a secure way [157, 166]. The pro-

tocol facilitates IPv6 interoperability at the application and network lay-

ers [94, 245, 113], and can restore end-to-end connectivity in the presence

of NAT devices [124, 228]. Thus, HIP provides a consolidated namespace

to meet the three presented high-level challenges and the approach is rea-

sonably realistic to deploy in practice as it is compatible with legacy ap-

plications. The impact of the namespace introduced by HIP is analyzed at

the higher levels of the networking stack from the view point of end-users,

firewall administrators and application developers.

1.1 Problem and Scope

The challenges studied in this dissertation are related to the lack of a

consolidated addressing model for the Internet. In this dissertation, we

survey a number of different solutions to these challenges2. However,

we narrow the focus to a single solution HIP in the end and most of the

individual articles are also related this particular architecture.

Compared to some other approaches, a distinct characteristic of HIP is

2A number of related surveys exist [54, 173, 97, 129]

4

Introduction

that it provides a new namespace that is visible to the applications. For

this reason, have chosen to focus on the application-layer aspects of HIP

in this particular dissertation. This way, we also supplement a number

of other dissertations analyzing HIP from different view points: mobility

mechanisms [244, 130], power consumption on hand-held devices [120],

HIP-aware middleboxes [91] and HIP applied to cellular networks [93].

It should be explicitly mentioned that Publication I is also part of an-

other dissertation [226]. The other dissertation is based on the HIP names-

pace as well but contributions lean on connectivity, network hand-off mech-

anisms from IPv4 to IPv6 and securing name resolution. In contrast, the

focus here is to analyze the effects of the new namespace on applications,

developers, firewall administrators and users.

While the viability of HIP to the addressing problems will be argued

later in this dissertation, the main contribution is related to analyzing of

the artifacts of applying and using HIP at the application layer. Based on

this, we postulate three high-level research problems for this dissertation:

Problem I. Revisit the challenges for a consolidated namespace at the ap-

plication layer.

Problem II. Improve and evaluate HIP as a consolidated namespace from

the view point of network application developers, network adminis-

trators and end-users.

Problem III. Understand the technical deployment issues related to HIP.

Problem I questions the challenges related for consolidated addressing

and revisits different the different aspects of it at the application layer.

Thus, this problem acts as a “reality check” and is mostly investigated in

Publication I.

Problem II takes a step towards more concrete direction and chooses a

particular consolidated naming solution from the alternatives presented

in chapter 2. In this research problem, we explore and improve HIP ar-

chitecture empirically for it to better meet the challenges of consolidated

naming. To add further practical value, this problem is analyzed from

the view point of different interest groups in chapter 3. The contributions

to this research problem can be attributed to multiple publications as fol-

lows. Publication II introduces a new programmable HIP Application Pro-

gramming Interface (API) for developers, Publication III presents a use

case for HIP to protect end-users from unwanted traffic, Publication IV

5

Introduction

proposes a firewall to support mobile devices that should ease the burden

of network administrators and Publication VI shows a usability evalua-

tion of HIP on end-users.

Problem III acts as another reality check for the proposed solution for

a consolidated namespace as offered by HIP. Namely, this problem chal-

lenges how feasible it is to deploy HIP from a technical perspective. Again,

the contributions to answer this research problem originate from multi-

ple individual publications. Publication I gives practical insight on the

API deployment in general, not only HIP. Then, Publication III describes

another deployment model where HIP is deployed only at the server side,

thus avoiding the hurdles of the client-side deployment. Finally, Publica-

tion V proposes a transition path for HIP that reduces the infrastructural

dependencies, which are often considered a deployment obstacle.

IP addresses

LISP d(TLS)NAT64 NUTSS IKEv2 HIP Evolution ..Mobile IP

AdministratorsUsersNetwork application developers

Network applications

User interfacesSockets API

Non−persistent Heterogenous Non−secure

Deployment challenges

A Consolidated Namespace

Frameworks

Figure 1.1. A visualization of the challenges in the TCP/IP stack and some solutions

Figure 1.1 visualizes the research challenges of this dissertation using

stack diagram. The layer on the top of the figure represents the target

groups of this work, that is, network application developers, users and

administrators. The developers program network applications either di-

rectly using the Sockets API, network application frameworks or libraries,

where as the users and administrative personnel typically utilize appli-

cations with graphical or command line user interfaces. However, both

frameworks and user interfaces use the Sockets API for network commu-

nications and it exposes IP addresses directly to networks applications

introducing them to non-persistent, heterogeneous, insecure and deploy-

ment related challenges. As listed in the bottom in the figure, these in-

6

Introduction

dividual challenges to achieve consolidated naming can be met using dif-

ferent TCP/IP extensions operating at the various layers of the networks

stack. Some of the extensions solve to multiple challenges where as oth-

ers only to a few. It should be noted that the taxonomy for consolidated

naming is described in detail in the next chapter.

The research problems focus on different areas of figure 1.1. In problem

I, we analyze consolidated naming in the context of the Sockets API and

network application frameworks. In problem II, we investigate and im-

prove HIP to better meet the requirements for consolidated naming from

the view point of end-users, network developers and administrators. Re-

search problem III focuses on the deployment aspects of HIP.

For completeness sake, other alternative solutions to HIP will be pre-

sented and compared later. However, alternatives will be constrained to

backwards compatible or incrementally deployable architectures to make

a fair comparison. In other words, we focus on evolutionary architectures

that try to minimize economical impact and extend the current life span

of the current TCP/IP architecture instead of, e.g., so called clean-slate ar-

chitectures [188, 172, 174]. Consequently, a number of research problems

and related solutions are out of scope [106, 114, 10, 127, 76]. For instance,

clean-slate networking based on, e.g., content/data-oriented networking

paradigm can require pervasive changes in network applications, stacks

and infrastructure. Delay Tolerant Networkings (DTNs) [249, 68, 107]

can require a total rewrite of the network logic of the application and

wireless sensor networks [28, 242] do not always implement a full TCP/IP

stack. Network mobility and mobile ad-hoc networks will not be consid-

ered as the thesis makes no contributions on this field of research. Mul-

ticast addressing model is not in the scope because it is not globally de-

ployed as a network-layer solution. Our view point is technical; a complete

economic analysis of HIP is out of scope.

1.2 Methodology

The methodology is heavily inclined towards empirical experimentation

in the collection of publications. With the exception of a purely statistical

analysis in Publication I, we implemented and analyzed a proof-of-concept

prototype into the remaining publications. The methodology for the quan-

titative analysis of the prototypes includes usability testing, software per-

formance and complexity measurements, and mathematical modeling.

7

Introduction

Qualitative analysis is present in all of the publications. Typically, the

design is scrutinized based on the practical insight learned by prototyping

and present solutions for the short-comings of the design. As an example

of the qualitative aspects, Publication V includes a qualitative analysis re-

lated to deployment (backward and forward compatibility of the design).

Table 1.1 summarizes the different methodologies used in the publica-

tions.

Methodology PI PII PIII PIV PV PVI
Prototyping X X X X X
Performance X X X X
Statistics X X
Modeling X
Qualitative X X X X X X
Usability X
Complexity X X X

Table 1.1. The methodology employed to analyze the networking software and concepts
in the publications

Simulation was not used as a method in the publications because large-

scale scalability was not in the focus of this work. However, all of the

performance measurements were conducted on commodity hardware to

understand the performance impact for individual hosts.

1.3 Contributions

The contributions of the individual publications can be summarized as

follows:

Publication I analyzes statistically open-source software in Ubuntu to

explore how applications of today resolve and utilize host names and

IP addresses, and how applications employ transport protocols and

security. A key finding of this publication is the recurring security

problems in the initialization of OpenSSL library. Another finding

related to this dissertation is a multihoming issue in all of the four

investigated network application frameworks. The contributions of

this publication can have real-world impact for improving the open-

source software in various Linux-based distributions. The authors

have also reported the UDP multihoming problem to the HIP work-

ing group at the IETF and it is mentioned in RFC5338 [95, p. 10].

Publication II argues that low-level security transparent to applica-

tions, such as HIP and Internet Protocol security (IPsec), can be

8

Introduction

transformed into something more tangible for application develop-

ers. We support our argument by extending the Sockets API to sup-

port the cryptographic namespace of HIP by implementing the ex-

tensions in the Linux kernel and embedding them successfully into

an existing application. We were also among the first ones to em-

pirically experiment and report so called referral problems in HIP

and to implement user-specific identifiers for HIP. This publication

was further evolved in the Internet Engineering Task Force (IETF)

community and eventually was published as an experimental stan-

dard [123]. The publication inspired the author to collaborate with

SHIM6 working group to design another API that was published

also as an RFC [122].

Publication III proposes a cross-layer application of the computational

puzzles and the cryptographic namespace in HIP to combat against

email spam. In this publication, we integrated HIP puzzle control

into a spam filter to introduce a computational cost for senders of

spam. As a counter measure, spammers could change their identity

to escape identity and puzzle tracking. We addressed this problem

as an game-theoretic problem to find an optimal solution for inbound

email servers. A shortcoming of the proposed solution is the lack of

universal HIP adoption; however, the results are generalizable to

new application scenarios without legacy burdens, such as Peer-to-

peer Session Initiation Protocol (P2P-SIP) using HIP [118].

Publication IV presents the design, implementation and performance

evaluation of a transparent and HIP-aware firewall. The core idea

in the design is that the HIP-aware firewall tracks the identities

of the client-side devices instead of their IP addresses. This is a

relatively simple and secure way to authenticate mobile and multi-

access clients because the IP addresses of the devices can change fre-

quently. The proposed design resembles a Virtual Private Network

(VPN) solution but is based on end-to-end architecture instead of

end-to-middle and supports easy network address renumbering at

the service side. The approach eases the life of network administra-

tors because they do not need separate access control lists for IPv4

and IPv6. The publication also analyzes and proposes solutions to

some challenges related to deploying the solution, including man-

agement of the identities and fine-grained access control to services.

9

Introduction

The outcomes of this experiment are referenced by the HIP experi-

ment report [94, pp. 25].

Publication V investigated if the cryptographic namespace of HIP could

be managed without deploying the cryptographic keys in the Domain

Name System (DNS). The extra records can introduce management

complexity and may be subject to forging until Domain Name Sys-

tem Security Extensions (DNSSEC) is adopted globally. The chosen

approach was based on leap-of-faith security model that was also a

recipe for success for Secure Shell (SSH). We implemented the model

for HIP using an interposition library that translated application

traffic based IP addresses into Host Identifiers on the fly. The imple-

mented library prototype did not require changes in the applications

and could fall back to non-HIP connectivity when a peer did not sup-

port HIP. We measured the prototype for software complexity and

performance. Finally, we analyzed the design for forward compati-

bility and for security issues inherited from the chosen model. The

results indicate that HIP can be managed without any support from

DNS, similarly as other substitute technologies, such as MobileIP,

VPNs and Transport Layer Security (TLS). The publication is ref-

erenced by RFC5338 [95, p. 9] and the IETF experiment report [94,

pp. 11] on HIP.

Publication VI evaluated how end-users perceive the cryptographic

namespace of HIP. While HIP can be visible to the applications, this

does not necessarily imply that the users actually observe the use of

HIP. To raise the awareness of the user of HIP-based security, we

implemented a graphical prompt for the user to explicitly approve

all HIP-based connections, a HIP plug-in for Firefox web browser

and a HIP-aware web site. The entire system was evaluated for

usability with two groups of test users. In tests, we applied differ-

ent combinations of security: no security, leap-of-faith HIP, normal

HIP and HIP combined with Secure Sockets Layer (SSL). We em-

ployed familiar security indicators in the browser and most users

perceived when the connectivity to the web site was secured, despite

the prototype was rather unpolished. The findings of the publica-

tions were reported to IETF and, consequently, the end-user GUI

is briefly mentioned in RFC5338 [95, p. 9] and referenced in HIP

experiment report [94, pp. 11].

10

Introduction

As the contributions of the publications to the research problems are

convoluted as discussed in section 1.1, the order of the publications devi-

ates from the logical order of the problems. Instead, the publications are

organized to ease readability. PI is the most generic publication and gives

an introduction to the Sockets API. Next, PII extends the Sockets API to

provide a generic API for HIP-aware applications. Then, PIII extends the

HIP-specific API to support the use case of mitigation of spam. PIV in-

troduces another use case for HIP, that is, to provide infrastructure-based

access control for the services of mobile clients. Finally, PV experiments

with use of HIP without the dependency to DNS infrastructure which is

then tested with end-users in PVI.

Table 1.2 summarizes the contributions of the individual publications

from the view point of the challenges and the target user groups. The

challenges related to non-persistent, heterogeneous and insecure address-

ing are covered by the first research challenge. The target user groups are

related to the third research problem.

Challenge/target group PI PII PIII PIV PV PVI
Non-persistent addressing X X X
Heterogeneous addressing X X
Insecure addressing X X X X X X
End-users X
Network app. developers X X
Network administrators X X X

Table 1.2. Contributions of the publications for the addressing challenges and target user
groups

1.4 Author’s Contributions

The author of this dissertation was involved in all activities of the pub-

lications, starting from conception of the idea, spanning from design, im-

plementation, measurement and analysis of the results, and ending in

writing of the publication. Here, some of the author’s contributions to the

publications are highlighted.

Publication I: The author contributed many of the ideas in this publi-

cation and manually inspected half of the frameworks. A co-author

handled collection of the statistics.

Publication II: The author did most of the work for this publication,

including design, implementation, experimentation and writing.

11

Introduction

Publication III: The idea and design for this publication was conceived

by the author. The author integrated the puzzle mechanism into

the spam filter and measured puzzle performance. The theoretical

analysis originated from the co-authors but was coordinated by the

author.

Publication IV: The author designed and conducted the measurements,

and participated to the writing of the journal article.

Publication V: The initial prototype was designed by the author and

implemented by a student under the instruction of the author. How-

ever, the author rewrote the prototype several times to optimize it

before the actual measurements, which were also conducted by the

author. The author also wrote a large part of the text in the publica-

tion.

Publication VI: The author chose to be the second author in this publi-

cation even though the workload was split evenly between the first

and second author. The author’s contribution to this publication was

mainly technical even though he participated to the design of the

implementation and the design of the usability tests. The author

participated also to the actual usability test events in the role of a

note taker. The graphical user interfaces were implemented by an-

other developer under the instruction of the author.

During his post-graduate studies, the author published also a number

of other research papers, participated in the implementation and interop-

erability testing of the various HIP-related standards [157, 164, 158, 112,

138, 137, 163, 163, 162] and has become a co-author of four IETF stan-

dards [95, 123, 122, 124]. The author has also contributed HIP-related

kernel code that were adopted to the vanilla Linux kernel3. The author

has been involved with HIP for Linux implementation4 activities since

2002 which has been used by many other researchers for their own re-

search5.
3http://lwn.net/Articles/144899/
4https://launchpad.net/hipl
5Please refer to hipl-users and hip-dev mailing lists at http://www.freelists.
net/

12

http://lwn.net/Articles/144899/
https://launchpad.net/hipl
http://www.freelists.net/
http://www.freelists.net/

Introduction

1.5 Structure of the Thesis

Chapter 2 describes the background and related work. It describes the

challenges related to the TCP/IP architecture and organizes them into a

taxonomy for consolidated addressing. Also, different solutions to meet

the various challenges are presented and HIP is described in the end sep-

arately as it has an important role in the collection of articles. Chapter

3 describes and discusses the findings of articles at a high level, and also

points out future directions. It should be noted the results of the per-

formance measurements and other technical details are not repeated in

this section; rather, the goal is to position the work from the view point

of consolidated naming and the target user groups. Finally, the work is

concluded in chapter 4.

13

Introduction

14

2. Challenges and Solutions in the
TCP/IP Architecture

The TCP/IP architecture was conceived at an era when end-users con-

sisted of a trusted circle of people and network devices were too large

to be portable. The short-term needs prevailed and TCP/IP architecture

was designed with these two assumptions in mind. While these simpli-

fying assumptions contributed to the success story of the Internet, they

do not hold true anymore as practically every Windows desktop machine

is equipped with a virus scanner and hand-held devices are a part of ev-

eryday life. Despite of the early pioneering work to improve network ar-

chitectures [202, 193, 194, 52], the restrictions of the original TCP/IP ar-

chitecture are still present and the remaining challenges to meet modern

requirements are fulfilled by different extensions to the architecture.

This chapter presents a survey of a number of problems originating from

restrictions in the TCP/IP architecture and their solutions. We focus on

issues related to network addressing from the view point of the network

and upper layers. These issues are further organized into taxonomy and

divided into challenges related to non-persistent, heterogeneous and in-

secure addresses. Within the problem scope of this dissertation, we then

enumerate through a number of standardized and research solutions that

address the challenges within the scope of this dissertation1. In addition,

technical challenges related to deployment barriers will also be discussed

briefly. We also present the architecture of HIP in more detail because it

was chosen as the vehicle for experimentation in the collection of articles.

Finally, the last section presents a comparison of the different approaches

and explains how the collection have improved HIP in order to prepare for

next chapter that presents the contributions in detail.

1With the exception of Plutarch, all chosen solutions have been also implemented

15

Challenges and Solutions in the TCP/IP Architecture

2.1 Non-Persistent Addressing

The TCP/IP architecture of the Internet was designed around the contem-

porary restrictions of large computers that were difficult to move around.

However, electronics followed Moore’s law, resulting in cheaper and smaller

electronics for consumers. As the electronics was shrinking in size, portable

devices, such as laptops and cellular phones, became pervasive. Conse-

quently, the original restriction for static hosts was no longer true even

though is was still present in the design of TCP/IP networking stack.

The TCP/IP stack remains still constrained by its original design that

was effectively a design compromise to make the addressing model more

simple. Namely, TCP was designed to reuse the same namespace as the

IP layer. While an obvious benefit of this short cut was to avoid managing

an additional namespace, the main drawback is that this makes TCP con-

nections more static. As TCP connections are created based on the same

addresses used by the underlying network layer, the connections are ren-

dered broken when the address changes or is removed. In contrast, UDP

is more suitable than TCP for tolerating address changes by its connec-

tionless nature. However, it can be used in a connection-oriented way,

exposing it to the same constraints as TCP.

In general, the TCP/IP architecture is challenged in the temporal dimen-

sion of addressing as it was designed to assume stable addresses. This not

only problematic from the view point of initial connectivity but especially

with sustaining of on-going data flows.

In this section, we look at the challenges related to the transient nature

of addresses in the TCP/IP architecture from the view point of the appli-

cation layer. While the lifetime of addresses, and perhaps the quality of

service related to the use of the address, is directly visible to the applica-

tion, we describe a more fine-grained taxonomy of the related challenges.

Challenges related to long-term disconnectivity as being tackled by DTN

are out of scope. Then, we fit some example solutions to each category.

Finally, as some solutions fit multiple categories, such as is the case with

HIP, we provide a summary of the problems solved by each solution.

2.1.1 Challenges

Originally, IP address was defined to only be used at the network layer but

TCP reused the addresses as its connection identifiers [214, p. 15]. Corre-

spondingly, the Sockets API, the de-facto low-level programming interface

16

Challenges and Solutions in the TCP/IP Architecture

for network applications, was designed before DNS and is therefore heav-

ily encumbered with the use of IP addresses [49, p. 15].

While the reuse of IP addresses at multiple layers offers relief from ad-

dress management issues, it is a layer violation that results in undesired

dependencies between the layers. IP addresses are confined to the local

network topology and effectively define “where” a host is located, where as

transport-layer identifiers define “who” the connection end-point is [153,

p. 6]2. Consequently, transport layer becomes dependent on the location

of the end-host and its data flows break when the end-host changes its

location. The problem is further aggravated by applications that should

be using application-layer identifiers (defining “what”3.), e.g., FQDNs or

its extensions, but instead employ IP addresses directly. Such use can re-

sult in connections to incorrect or even malign hosts because IP addresses

are typically ephemeral by their nature and, in private address realms,

overlapping. To further aggravate the problem, applications have also lit-

tle means to discover when IP addresses are stale because the Sockets

API does not attach any lifetime to the data structures associated with IP

addresses [214, p. 11].

For the just described reasons, it could be argued that the basis of the

TCP/IP architecture is founded on the assumption of stable, or persis-

tent addresses. Paradoxically, addresses are nowadays non-persistent es-

pecially due to the advancements in modern, mobile end-user equipment

and dynamic network environments. As TCP/IP is universally deployed

and adopted, changing its fundamental nature is economically challeng-

ing and, thus, various network technologies to reintroduce the persistent

addressing model have emerged. However, many of the solutions tackle

only single problem emerging from non-persistent addressing. Hence, we

roughly categorize the different approaches according to mobility, multi-

homing, renumbering and Internet transparency challenges.

In the first mobility challenge, a single device or an entire network of de-

vices changes its attachment to the network, which typically occurs due to

physical movement of the device(s). Network mobility [160] is out of scope

of this dissertation and the focus will be instead on host mobility [149, p.

25]. In host mobility, the problem is dual fold: when a host moves to differ-

ent network, it cannot no longer be reached by other hosts and its existing

2IP addresses are also used for routing which defines “how” to get there
3Due to the coupled role of addresses, Fully Qualified Domain Names (FQDNs)
could be considered as the new “who” and Universal Resource Locators (URLs)
as the new “where” [69, p. 21] due to the pervasiveness of the web

17

Challenges and Solutions in the TCP/IP Architecture

data flows are terminated. While both of these mobility-related issues are

important for applications based on the Peer-to-peer (P2P)-networking,

the initial reachability is more of a concern for servers where as sustain-

ing of existing connections is of importance for the clients in the client-

server paradigm. It should be noted that mobile end-hosts are also chal-

lenging from the view point of infrastructure as network-level firewalls

typically authenticate based on access-control lists based on fixed IP ad-

dresses.

The second multihoming challenge results in of multiple alternative

paths between two end-hosts and can be considered dual fold. Site multi-

homing occurs transparently within the network, without the end-host

applications realizing it besides observations in latency or throughput

when the path changes. In contrast, end-host multihoming is more ex-

plicit and visible for end-hosts and applications even though many devel-

opers are unaware of the end-host multihoming issue as they assume that

a single network interface always implies a single address [214, p. 12].

In contrast to mobility4, the multihoming challenge does not require

physical movement of the host but rather stems from multiple available

addresses, either on the same or different network interfaces. It has im-

pact not only on the client side but also on the server side. At the client

side, many hand-held devices support multiple access technologies such

as Wireless LAN (WLAN), 3G and bluetooth. A multihoming problem

emerges when inadvertent client chooses initiate communications from a

“wrong” address and this may result in a firewall on the path or the server

to block the traffic. At the server side, a misconception is that an applica-

tion binding to a specific IP address to filter incoming data will also send

outgoing data from the same address [214, p. 15]. Finally, besides ini-

tiation of data flows, the multihoming challenge manifests itself during

communications at both client and server side. When the path between

an active pair of addresses renders the data flow broken, it would be use-

ful to automatically switch to functional pair of address. Alternatively,

two data paths could be simultaneously utilized to maximize throughput.

However, such functionality remains unsupported by the TCP/IP stack.

The third challenge is site renumbering. As many client-side networks

are frequently renumbered with, e.g., Dynamic Host Configuration Protocol

(DHCP), renumbering issues surface at services that rely on hard-coded

4As a common denominator, Ylitalo [244, p. 22] scopes multihoming as a subset
of mobility

18

Challenges and Solutions in the TCP/IP Architecture

IP addresses internally. For instance, corporate mergers or change in the

ISP affects the IP address prefix of sites and requires the site to be renum-

bered. By human error, stale addresses might still be left in various loca-

tions after the renumbering. For instance, hard-coded addresses might be

discovered in firewall access-control lists of the firewall and configuration

files of web servers as described in Request for Comments (RFC) 5887 [49,

p. 34]. As human error can result in downtime of services and economic

loss, companies tend to avoid site renumbering despite it is adequately

documented in the RFC. It also attributes the renumbering issues par-

tially to the fact that the lifetime of IP addresses are dissolved when DNS

resolver functions of the Sockets API pass the addresses to the applica-

tion.

The fourth challenge is Internet transparency [48, p. 2] that refers to two

aspects of the original Internet design. Hosts were universally address-

able and intermediate hosts did not essentially modify packets, which re-

sulted in end-to-end connectivity where all hosts were reachable by oth-

ers. However, the transparency is broken by the evolution of the Internet

as NATs have introduced private address realms that break universal ad-

dressability and firewalls drop undesired flows of packets. While NATs

slowed down the depletion of the IPv4 address space and firewalls a coun-

termeasure against increasing malign traffic, they did not come without

trade offs. As examples of negative impact, NATs complicate communi-

cations of P2P-software and firewalls are enforcing Hypertext Transfer

Protocol (HTTP) as new the narrow waist for the Internet [184]. Conse-

quently, the Internet is evolving into an end-to-middle architecture, favor-

ing the client-server paradigm, and making the deployment of new trans-

port and network-layer protocols challenging. It is also worth noting that

end-hosts need to be able to address all middleboxes for complete Internet

transparency.

Related to Internet transparency, RFC 6250 [214, p. 6] describes two

misconceptions about applications and reachability. First, reachability

with NATs and firewalls is not always asymmetric as clients can reach

servers but the reverse may not hold true. The RFC mentions callbacks

as one source of the problem which are present in, e.g., File Transfer

Protocol (FTP). With active data transfer in FTP [185, p. 4], the client

passes its IP address as a callback to the server that then creates a new

TCP connection with the client. When the client is behind a NAT, the cre-

ation of the TCP connection fails, resulting in a failure of the file transfer.

19

Challenges and Solutions in the TCP/IP Architecture

A second issue described by the RFC is that reachability is not always

transitive. As an example scenario, host A can reach B that can reach C

but this does not guarantee that A can reach C as routes may be differ-

ent between each node, with different firewalls or NATs between. This

problem is also referred as a referral problem. For instance, HTTP [72, p.

62] avoids the referral trap with its clever design of redirection. When a

web server receives a request from a client that needs to be redirected to

another server, the server informs the client to connect directly to other

server instead of bluntly passing the client’s address as a referral to the

other server for connecting back, which would be problematic with in the

presence of NATs.

2.1.2 Solutions

As discussed in the previous section, the root cause for the inflexibility of

the TCP/IP architecture is that the transport and network layers share

the same namespace, convoluting the semantics of the layers. Thus, it is

only natural to decouple the namespaces, either in a strict way or loosely

to facilitate host mobility and multihoming. In general, this architectural

approach is sometimes referred as the identifier-locator split [214, p. 14]

and the Internet Architecture Board (IAB) has acknowledged it is a viable

way to modularize the TCP/IP architecture [153, p. 7], [145, p. 4],[146, p.

7].

In practice, the identity-locator split approaches introduce one level of

indirection in naming and many backwards-compatible approaches try to

restore persistent addressing with “surrogate” addresses [146, p. 58] to

be used in place of routable addresses. Despite the syntax of the two ad-

dresses can be convoluted, the semantic difference is nevertheless usually

emphasized by calling the surrogate addresses as identifiers. In some lit-

erature [157, p. 3] identity refers to an abstract entity and identifier is a

concrete realization of the identity with certain predefined presentation

format. In the context, we also use the term persistent identifier [103, p.

20] to emphasize the invariant nature of stable surrogate addresses.

The identifier-locator split is just an architectural paradigm that has to

be concretely realized with a concrete protocol and, thus, different designs

alternatives have been proposed. According to RFC 4177 [103, pp. 8, 15],

the split can be implemented by modifying existing protocol elements, or

by adding new “shim” protocol elements between application and trans-

port, or between transport and network elements. The RFC further de-

20

Challenges and Solutions in the TCP/IP Architecture

scribes that the split can be realized at end-hosts or middleboxes (site-exit

or edge routers). According to some terminology [146, pp. 11,21], the for-

mer is called core-edge elimination and the latter core-edge separation.

Regarding to the syntax and semantics with the identifiers, several al-

ternatives exist according to RFC 4177 [103, pp. 18-20]. For instance,

the identifier and locator namespaces can be overlapping or disjoint. The

trade off with completely disjoint namespaces is the extra complexity of

additional mappings between identifiers and locators – the context [193,

p. 2] of use may be needed in order to disambiguate between the overlap-

ping namespaces. The identifiers can be structured (typically hierarchical)

or unstructured (commonly referred as “flat”).

Identifiers can further be classified into three levels according to their

uniqueness according to RFC 4177 [103, pp. 20-23]. The least unique

type of identifiers are ephemeral identifiers that are created during a com-

munication session to merely distinguish it from others. As an example

of this, two hosts using IPsec-based protection use an Security Parame-

ter Index (SPI) [117, p.] number to indicate the symmetric key used

to protect the packet. Opportunistic identifiers are bound either tempo-

rally or topologically, and do not always guarantee that sequential use of

an identifier result in a connection to the same host. For instance, the

present Internet with its private address realms can be categorized into

this group as the same, possibly private, IP address can result in a com-

munication with a different host depending on which network the con-

necting host is located. These two classes of identifiers are jointly labeled

as non-persistent in the context of this dissertation.

Persistent identifiers, are global in their scope and unique across con-

current and parallel sessions according to RFC 4177 [103]. They can be

used for initiating communications at any time and anywhere, and are

guaranteed to always result in communications with the same host or no

communications at all. For instance, MAC addresses are an example of

unique identifiers at the data-link layer that are centrally assigned. In

contrast, public keys generated to identify SSH hosts can be considered

statistically unique identifiers at the application layer.

In the context of this work, we clarify two properties for persistent iden-

tifiers. Firstly, we specify that such identifiers must facilitate end-host

mobility, end-host multihoming, site renumbering and Internet transparency.

Secondly, we note that persistent identifiers are impacted by the referral

issues when the identifiers are unstructured and used in the context of

21

Challenges and Solutions in the TCP/IP Architecture

name directories supporting only structured name look ups. In such a

scenario, the identifiers may need some additional information in order

to be successfully searched through the structured directory. Here we,

define that the referral issues will not render a persistent identifier into

non-persistent and rather describe the referral issues separately.

Besides address agility, the identity-locator split holds also the promise

to improve the routing scalability of Internet “core”, or Default-Free Zone

(DFZ) to be more exact, which is facing some addressing-related chal-

lenges. For example, many companies prefer Provider-independent (PI)

addresses over Provider-allocated (PA) addresses to facilitate easier mi-

gration from an ISP to another [146, p. 5],[153, p. 5]. The trade off

here is that PI addresses do not aggregate as well as PA addresses, thus

PI addresses create larger routing tables and challenge routing scalabil-

ity [29, p. 8]. Essentially, the identity-locator split can be used to reap

the benefits of PI and PA addresses. The identity namespace offers the

same topology-independent functionality as PI addresses and the loca-

tor namespace supports aggregation similarly as PA addresses. For ap-

plications, the unresolved scalability problems may cause degradation of

Quality of Service (QoS) in the future. The solutions (based on identity-

locator split) can limit the degradation and affect the way how applica-

tions identify other hosts.

The benefits for the routing scalability in the elimination approach are

only fully realized when most of the hosts of a site are upgraded to support

the elimination. In contrast, only the edge routers have to be upgraded in

the separation approach to enable it for the whole site5. The elimination

approach improves routing scalability, as routing tables grow with the

number of ISPs rather than edge networks [108, p. 2]. However, the

separation does not support Internet transparency because it creates a

separate locator namespace to solely for the routers. Consequently, end-

hosts cannot address routers anymore because they are confined to the

identity namespace [108, p. 4] in the separation approach.

Protocols implementing the identity-locator split are typically based ei-

ther on tunneling or address rewriting [103, pp. 15-16]. The tunneling

approach is also referred as map-and-encap. With tunneling, the pack-

ets are encapsulated with an extra header: the inner header contains the

identifiers and the outer header the locators. The header is added when

the host responsible of the identity-locator split sends the packet, and

5Communications with legacy sites is another issue in core-edge separation

22

Challenges and Solutions in the TCP/IP Architecture

correspondingly removed at the destination by the responsible host. In

address rewriting schemes, the responsible hosts translate identifiers to

locators when sending and translate locators back to identifiers at the des-

tination. The translation can involve the whole address or just portions of

it, such as the prefix.

The tunneling approach requires a mapping infrastructure from where

to look up the locators corresponding to the identifiers. This approach

can result in lost packets especially when combined with the core-edge

separation. When an edge router receives an outgoing packet with the

identifiers, it has to look up the corresponding destination locator and

thus may have to drop the packet until the look up is completed. As the

tunneling scheme adds an extra header, it changes Maximum Transfer

Unit (MTU) and fragmentation processing [153, p. 18]. Tunneling breaks

also geolocation based on IP addresses [214, p. 14]. However, a bene-

fit of the tunneling is that it is stateless as each packet contains all the

necessary information to process it.

As an alternative to tunneling, address rewriting typically requires some

extra state at the middleboxes. Typically, packets do not have be dropped

as the translation is known beforehand. Translation does not affect MTU

as no extra header is added. It should be noted that some translation

schemes alter the semantics of IP addresses, e.g., by splitting a single ad-

dress into identifier and locator portions. Such schemes require changes

to application logic as most of them generally treat addresses as opaque

tokens without additional semantics [153, p. 18].

Next, we describe some protocols that try to introduce persistent iden-

tifiers to facilitate mobility, multihoming, site renumbering or internet

transparency. We survey different approaches based on the identity-locator

split in addition to other application, transport and network-level solu-

tions.

Mobility Solutions

The mobility-related terminology in this section refers to RFC 3753 [149]

unless separately mentioned. Network mobility refers to relocating to

an entire network without interrupting packet delivery. Network mobil-

ity [65])6 will not be further examined here and the interested reader may

refer to other sources [64, 60, 178, 62]. In host mobility, or terminal mo-

6In contrast, site renumbering will be discussed later. While renumbering and
network mobility could be solved with same technologies, the solutions differ in
practice

23

Challenges and Solutions in the TCP/IP Architecture

bility, a host retains its connectivity with other hosts despite of changing

its network attachment point. For example, this can occur when a laptop

moves from the range of one WLAN network to another. Session mobility

refers to migration of an application-layer session between two different

devices.

In the temporal dimension, the connectivity can divided into sustaining

initial connectivity versus sustaining of on-going communications. Typ-

ically, the former requires the help of immovable infrastructure to relo-

cate the moving host. As an example solution to this problem, DNS in-

cludes extensions [230] that allow hosts to update their new location in

the DNS. In order to provide a stable “anchor” point, the infrastructure is

also needed to sustain on-going communications of two hosts that move

at the same time. When only one end-point of the communications moves

at a time, support from the infrastructure is optional because the moving

host can inform directly its other communications partners about its new

whereabouts. This process, independently of whether it includes network

intermediaries or not, is usually referred as handoff or handover.

A horizontal handoff occurs when a device moves between homogeneous

access technologies. As few examples, this can occur when in bridged eth-

ernet networks [218] or when a laptop moves between two WLAN access

points [155, 186] or when when a cellular phone transitions between two

base stations In contrast, vertical handoff occurs when a mobile devices

switches between different network types, such as WLAN and 3G. Some

mobility mechanisms function only within a single address domain and

this is called local mobility or micro mobility. In contrast, global mobility,

or macro mobility, works across different domains.

Mobile IP is classic example of a protocol supporting global mobility,

albeit it has both a standardized [176, 175] and a research variant [41]

more optimized for local mobility. Originally, Mobile IP was not address-

family agnostic [244, p. 22] at the network layer because it had one pro-

tocol supporting IPv4 networking [176] and another IPv6 [177]. How-

ever, Dual Stack Mobile IPv4 (DSMIPv4) [221] or Dual Stack Mobile IPv6

(DSMIPv6) extensions [205] facilitates both IP versions within a single

protocol7.

In Mobile IP terminology, a moving host is denoted as mobile node and

its communication partners are referred as correspondent nodes. In gen-

7Another issue is IPv6 interoperability at the application layer which is the topic
of section 2.2

24

Challenges and Solutions in the TCP/IP Architecture

eral, Mobile IP supports host mobility by introducing a persistent, sur-

rogate address for mobile nodes. The address identifies the node, and

it is referred as home address. Correspondingly, the mobile node is lo-

cated using its care-of-address that refers to its current IP address in the

topological network topology. The home address and care-of-address are

bound together by a network intermediary, called home agent that relays

traffic from the correspondent to the mobile node, thus maintaining an

illusion for the correspondent node that the mobile node has a persistent

address [144, p. 6]. The home agent [156] relays also the reverse direc-

tion8. When a home agent becomes unreachable, the mobile node can

switch to an alternative home agent [134] albeit with the cost of disrupt-

ing existing transport-layer sessions.

In contrast, MobileIPv6 supports direct communications from the be-

tween the mobile and correspondent node (route optimization) when the

correspondent supports MobileIPv6 protocol. Another difference in Mo-

bileIPv6 is that IPsec-based security is mandatory which is typically man-

aged with the help of Internet Key Exchange (IKE)v2 [116].

While Mobile IP could be described as standardized end-to-middle tun-

neling solution, a number of end-to-end solutions have been proposed

by the academia. For example, Location Independent Networking for

IPv6 (LIN6) [135] splits an IPv6 address into two: the first 64 bits iden-

tifies the network attachment point (locator) and the last 64 bits identify

the end-host. In essence, LIN6 introduces a new logical shim layer be-

tween transport and network layers that serves two purposes. Firstly, the

upper layers are isolated from network layer changes as the shim layer

translates the locator portion to a LIN6-specific prefix before delivering an

incoming packet from the network to the transport layer. This identifier

is referred as the “generalized identifier” and the application can utilize

it, e.g., for access control as it is immutable. Secondly, the shim layer can

manage end-host mobility because it can translate the LIN6-specific pre-

fix to a suitable locator before sending a packet to the network. LIN6 is

dependent on extra infrastructure, called mapping agents, that the LIN6-

capable end-hosts update regarding to their current identity-locator bind-

ings.

As another core-edge elimination approach, a later proposal 9 called

8Early versions of Mobile IPv4 employed so called triangular (asymmetric) rout-
ing where the reverse direction did not involve the home agent. Also, another
optimization called foreign agents is not usually deployed at all in practice
9ILNP is founded on an even earlier approach called GSE which will be described
in section 2.1.2

25

Challenges and Solutions in the TCP/IP Architecture

Identifier-Locator Network Protocol (ILNP) [16] splits an IPv6 address

into identifier and locator portions similarly as LIN6. In contrast to LIN6,

ILNP does not provide a generalized identifier to upper layers but rather

exposes the possibly outdated locator portion. To avoid changing applica-

tion semantics to interpret only the identifier part, ILNP proposes instead

extensions to the Sockets API that use FQDN names to hide the details

of addresses entirely from the applications. As another difference, ILNP

reuses DNS rather than requiring new mapping infrastructure and stores

the mapping information in new DNS resource records. To secure the pub-

lishing of identity-locator bindings, the approach assumes secure dynamic

DNS updates [234] for site adopting the approach. End-hosts can also

inform each other directly about their changed network locations using

ICMP(v6) messages but DNS is utilized as a fixed re-contact point when

two end-hosts relocate simultaneously. While the approach targets pri-

marily IPv6 with its concrete ILNPv6 proposal, a separate ILNPv4 proto-

col is sketched that uses IPv4 options to carry the identifiers and requires

modifications to Address Resolution Protocol (ARP). ILNP can reuse IPsec

to secure its data plane but requires changes to IPsec processing to ignore

the locator portion of IPv6 addresses.

Internet Indirection Infrastructure (i3) [211] is another research-oriented

architecture facilitating end-host mobility based on core-edge separation

and identity-locator split. As the name suggests, i3 achieves mobility by

introducing indirection infrastructure that hides the location of the end-

hosts. The infrastructure consists of an application-based overlay based

on Distributed Hash Table (DHT). For two applications to communicate

over the overlay, the server-side chooses an arbitrary identifier for itself

and publishes a hash of its identifier along with its IP address in the DHT.

Then the client-side application can deliver data to the server through the

application-layer overlay using the published identifier. This way, the in-

frastructure decouples senders from receivers and allows applications to

update their current location to the overlay. Based on the decoupling, i3

can further support anycast and multicast.

Forwarding directive, Association and Rendezvous Architecture (FARA) [57]

decouples also identity from its location by abstracting the functionality

of the different layers of the networking stack. The architecture does not

require any new namespace to be introduced but it relies on overlay-based

infrastructure to assist in mobility. As a concrete realization of the archi-

tecture, M-FARA [181] is based on IP namespace but implements its own

26

Challenges and Solutions in the TCP/IP Architecture

transport protocols and network intermediaries to support mobility.

It should be noted that many of the network-layer solutions for mo-

bility remain marginally adopted and deployed. Thus, many applica-

tion layer solutions have emerged to tolerate mobility at some level. For

instance, many web browsers, including Mozilla Firefox, support paus-

ing and resuming of downloads. Email client software, such as Mozilla

Thunderbird, can tolerate disconnectivity and automatically reconnect to

the email server. Internet telephony as supported by Session Initiation

Protocol (SIP) includes session mobility [199]. Most web services identify

HTTP sessions10 with browser cookies and, thus, can tolerate IP address

changes for non-streaming applications. In web browsers, the use of per-

sistent HTTP, i.e., the reuse of the same TCP connection has been reduc-

ing [44, p. 3], perhaps to tolerate mobility better. Finally, more generic

application layer solutions based on, e.g., libraries [246], by introducing

a new session layer [203] and overlays [5] have also emerged from the

academia but have not been yet embraced by application developers.

End-host Multihoming Solutions

In mobility scenarios, the host may be disconnected for a short period of

time (break-before-make) during a handoff. However, multihoming scenar-

ios can involve simultaneous availability of multiple network paths that

may result in a smoother handoff because the host may be able to pre-

pare an alternative path while sustaining communications using the ac-

tive path (make-before-break). Similarly as mobility, multihoming can be

realized at multiple layers of the networking stack. For instance, the mul-

tihoming is present with multiple email accounts; sending an email using

an unsubscribed email address will bounce off an mailing list. While the

challenge persists at different levels, we focus on transport and network

level solutions in this section.

As with mobility, multihoming solutions can be realized at end-host or

intermediate hosts. When multihoming is implemented at network inter-

mediaries such as routers, it is usually referred as site multihoming. The

purpose of such multihoming is to make use of network redundancy in

order to dynamically switch from one network provider to another when

a network fault occurs, but it can also be utilized for load sharing and

other traffic engineering purposes [1, pp. 2-3]. For IPv4, RFC 4116 [2,

pp. 4-7] documents a number of methods to facilitate site multihoming.

10According to some measurements [148, p. 1], HTTP traffic can amount for
nearly 60% of Internet traffic

27

Challenges and Solutions in the TCP/IP Architecture

The use multiple Autonomous System (AS) numbers is another option but

this approach is problematic as the numbers are a finite resource. A more

scalable way is to make use PA addresses and advertise new routes in the

Internet with Border Gateway Protocol (BGP) when switching between

ISPs. However, the drawback of this is that the site needs to renumber its

network when changing its primary service provider. Site renumbering is

the topic of the next section and we focus on approaches dedicated solely

on end-host multihoming in the remainder of this section.

Scalable multihoming is an important goal for the Internet architec-

ture [146, p. 7]. When the goal is merely to sustain on-going communica-

tions for the sake of multihoming, non-persistent identifiers are sufficient

enough [103, pp. 21-22]. At best, Stream Control Transmission Protocol

(SCTP) [170] is an example of the use opportunistic identifiers11. SCTP

makes no attempt to uniquely identify hosts but merely facilitates end-

host multihoming, and also end-host mobility with later extensions [210],

with routable IP addresses. SCTP introduces a new transport proto-

col [208] that applications can utilize with its separate Sockets API exten-

sions [209]. In contrast to TCP, SCTP can also support multiple streams

within a single session and offers a messaging oriented API that avoids

application-level framing of messages.

Multipath TCP (MPTCP) [74] extends TCP to support end-host multi-

homing for both failure tolerance and load balancing purposes. Similarly

as SCTP, it makes no attempt to introduce a new namespace. As it is

based on IP addresses, it can be characterized to be based on opportunis-

tic identifiers. However, a crucial difference to SCTP is that can work

with unmodified legacy applications, despite its optional extensions for

the Sockets API [195].

As another approach, identity-locator split has been proposed to decou-

ple the existing transport and network layers from each other to facili-

tate more generic form of multihoming [103, p. 13-14]. As an example,

Site Multihoming for IPv6 (SHIM6) [168] is an IPv6-specific end-to-end

solution that introduces a shim layer to the end-host stack. The shim

layer does not introduce a new namespace but rather reuses routable IPv6

addresses as both identifiers and locators. This design choice allows a

SHIM6-capable host to communicate with a SHIM6-incapable host. Con-

sequently, SHIM6 does not require any changes to IPv6 applications even

11Individual streams inside SCTP sessions have stream IDs that are effectively
ephemeral identifiers

28

Challenges and Solutions in the TCP/IP Architecture

though it has an optional API for SHIM6-aware applications [122].

Site Renumbering Solutions

Site renumbering occurs typically when site changes its network provider,

e.g, to obtain more competitive prices12. The new provider will offer a dif-

ferent IP address range and the site needs to be renumbered to correspond

the new prefix. Ideally, only DNS-based names would have been used in-

ternally by site and by external sites to reference the various services of

the local site. Then, the transition could be accomplished by merely up-

dating DNS records and waiting for the cached entries to expire. However,

this is not often the case and IP addresses are embedded in various ap-

plication, service and infrastructure configurations [49, p. 34], and down-

time is avoided at any cost.

In a nutshell, site renumbering can interrupt existing transport-layer

connections and it can cause certain hosts to be completely unreachable

due to address misconfigurations. The former problem can be solved us-

ing some of the end-host mobility or multihoming protocols described in

the previous two sections and will not further discussed in this section.

The latter problem is more severe and this section focuses on solutions

adhering to it. Instead of ephemeral or opportunistic identifiers, many of

these solutions require more heavy-weight means in the form of persis-

tent identifiers to ensure that services remain reachable.

Another characteristic of the protocols is that many of them support

at least site multihoming in addition to the site renumbering. Many of

the protocols also advertise themselves as a solutions routing scalability.

In this work, we treat problems with routing scalability as a symptom

or side effect of missing renumbering support rather than the root of the

problem; the actual source of the problem is either a non-scalable choice to

support site multihoming or site renumbering, such as is the case with PI

addresses. Thus, “routing scalability” will not be discussed in its own sec-

tion but rather as a benign property of individual solutions to site renum-

bering.

The scalability of the Internet is challenged by increasing amount of

prefixes that aggregate poorly. According to RFC 4984 [153], there are

multiple sources that attribute to the problem. For example, some com-

panies avoid renumbering costs by using PI addresses instead of PA ad-

dresses. Historical, non-aggregatable address allocations, well as mul-

12At least in Finland, it is possible to change your cellular operator without
changing your phone number. Unfortunately, this does work at all with ISPs

29

Challenges and Solutions in the TCP/IP Architecture

tihoming and traffic-engineering tricks further aggravate the problem.

Moore’s law do not help to curb the costs for high-end routers because they

employ different type of memory than what is used in commodity hard-

ware such as cellular phones. To recap, the RFC states that routers are

becoming more expensive, routes are becoming more “flat” despite routing

is still based aggregatable algorithms13 and the pursuit for local benefits

has resulted in global scalability related costs.

RFC 4192 [25] describes procedures on how IPv6 renumbering can be

realized manually without introducing service breaks. The renumbering

includes prefix-related modifications to switches, routers, firewalls, DNS,

DHCP, end-hosts and application configurations. However, RFC 5887 [49]

states that renumbering is still hard in practice due to very nature of

IP addresses. While dynamic service discovery, IPv6 support for multi-

ple addresses during transition period and unique local IPv6 addresses

[100] for intranet communications relieve some of the problems, manual

renumbering procedures are still far from a seamless. For example, Time

To Live (TTL) values in DNS should be manipulated smaller in the begin-

ning of the transition but this causes caching-related tensions. The TTL

values are not percolated to the applications because Sockets API does not

support such concept as it was designed before DNS. Until browsers are

restarted, many of them employ so called “DNS pinning” that caches the

addresses of the server to avoid security issues. In addition, routers may

have to be restarted as they cache addresses and server-side applications

have to bind to multiple addresses for the duration of the transition pe-

riod. Finally, the RFC also mentions that protocol level dependencies as

34 out of 257 RFCs had explicit address dependencies.

Independently of whether PI or PA addresses have been used for multi-

homing or site renumbering purposes in an edge network, injecting non-

aggregatable addresses has introduced scalability challenges for the global

routing in DFZ [119, p. 1]. As a compromise, readdressing can be avoided

in IPv4 by employing private addresses within the site while sustaining

scalability with PA addresses [2, p. 7]. In IPv6, the same can be ac-

complished with Unique Local Addresss (ULAs) [102]. While these ap-

proaches support renumbering within an intranet, they need additional

support to facilitate external communications. Without additional sup-

port (e.g. VPN tunneling), ULAs cannot be used for external communi-

13RFC 4984 points out that only few feasible approaches to non-topological rout-
ing have been proposed [42, 4, 132]

30

Challenges and Solutions in the TCP/IP Architecture

cations at all. By default in IPv4, NAT devices drop incoming data flows

unless some special arrangements are in place. For both incoming and

outgoing data flows, NAT devices typically do not support support surviv-

ability of transport layer connections [49, p. 17]14.

Evolution [146, p. 52-56] is an incentive-based strategy that combines

a number of short-term traffic engineering schemes requiring no coordi-

nation between sites into a long-term plan that requires coordination. In-

stead of promoting a sudden “revolution” in routing architecture, the ap-

proach is phased so that each step gradually improves routing scalability

and brings immediate benefits for its early adopters [119]. The approach

starts from the intra-AS changes and ends with inter-AS changes to ul-

timately accomplish core-edge separation. The intra-AS changes involve

algorithmic improvements to the software in local routers to achieve bet-

ter Forwarding Information Base (FIB) aggregation locally.

In the second iterative step of the evolution approach, new infrastruc-

tural indirection elements are introduced. The local AS deploys new routers,

called Aggregation Point Routers (APRs), to facilitate virtual aggrega-

tion [27, p. 1] within its own AS. The idea is that the APRs split the

entire IPv4 namespace artificially into large, virtual fragments and each

APR advertises its responsible block to legacy routers inside the AS. This

way, legacy routers of the AS survive with fewer route prefixes and the

complexity of finding more accurate routes is shifted to new APRs.

As a trade off, the APRs naturally introduce path stretch in the sense of

an extra hop. Another drawback is that the approach requires tunneling

to avoid routing loops [27, p. 3]. The tunnel starts from the APR and is

terminated at the egress site-exit router that further uses extra informa-

tion of the tunnel to make the precise forwarding decision.

While the intra-AS tunnels allow a single AS to evolve independently

of others, it is very suboptimal when multiple ASes have adopted the ap-

proach a packets have to be encapsulated and decapsulated redundantly.

Fortunately, the overhead involved with this map-and-encap approach

can be mitigated in the final phase of the evolution where pairwise agree-

ments are expected to emerge between different ASes that employ virtual

tunneling. The incentive is that two ASes can start advertise and peer

virtual routes directly for each other so that the tunnels do not have to

be terminated in the middle but rather are established between the two
14NATs also conflict with Internet transparency but this will be discussed in
more detail in section 2.1.2

31

Challenges and Solutions in the TCP/IP Architecture

ASes. With time, the number of agreements grow and eventually the In-

ternet gradually evolves towards a separate virtual routing name space.

In general, virtual aggregation introduces a new parallel routing names-

pace and this mapping between two namespace need to be managed some-

how. The evolution approach suggest reuse and extend BGP for back-

wards compatibility, and to minimize costs related to the mapping in-

frastructure. In contrast, Location-Identifier Separation Protocol (LISP)

working group in the IETF proposes a more revolutionary approach and

directly focuses on last phase of the evolution approach. Cisco-driven

LISP is a core-edge separation protocol and it implements identity-locator

split in border routers. LISP introduces a new protocol for the map-and-

encap scheme [70]. For distributing mappings, multiple alternatives have

been proposed. For instance, NERD [143] proposed a full mapping table

for each mapping host and the approach officially adopted by the working

group, ALT [81], is based on partial tables organized into a hierarchical

overlay. To reduce initial latency, ALT can be used for piggybacking data

packets.

Besides improving renumbering and routing scalability, LISP-capable

sites support also site multihoming without modifications to end-hosts15.

As trade offs, LISP requires new mapping infrastructure, i.e., proxies to

interoperate with legacy networks and the overhead for testing aliveness

with other connected LISP routers as described in RFC 6115 [146, pp. 9].

The RFC lists also other protocols with different technical details based on

core-edge separation and map-and-encap scheme (such as Six/one [231],

IVIP [235] and IRON/RANGER [213]), but LISP suffices here as a prime

example of protocols in this category.

Global, Site, and End-system address elements (GSE) [169] serves as

an early example of locator-rewriting approach based on core-edge sepa-

ration. The approach splits an IPv6 address into three pieces. The prefix

of the address is denoted as routing goop which can be changed by routers

and it essentially identifies a network. In the middle, site-topology parti-

tion can locally be used defining different subnets for a site. The remain-

ing part, end-system designator, is a globally unique end-host identifier

generated from the Media Access Control (MAC) address of the host, for

instance. GSE supports site renumbering because the end-hosts are iden-

tified with the end-system designator and GSE-capable routers adjust the

15LISP extensions to support end-host mobility are being pursued at the
IETF [71] that require similar modifications at the end-host as in the various
approaches for core-edge separation

32

Challenges and Solutions in the TCP/IP Architecture

routing goop according to the local topology. The approach proposes also

new two DNS records, one for the routing goop, and another for the site-

topology partition and end-system designator.

GSE does not fully conform to Internet transparency because the rout-

ing goop inside the site may be different from the outside, effectively

requiring split DNS. At the transport layer, the routing goop and site-

topology partition should be excluded from the pseudo-checksum calcu-

lations. RFC 4984 [153, pp. 18-20] notes also that the end-system des-

ignators change semantics of some applications that compare addresses

for equality because they have to compare only the designator part. The

RFC further criticizes GSE for undefined locator-failure discovery and

raises the question of compatibility with Cryptographically Generated

Address (CGA) [18] addresses. The issues with GSE are further analyzed

by others [248].

Internet Transparency Solutions

While waiting for IPv6 to become ubiquitous, the IPv4-based Internet is

not transparent anymore as different kinds of middleboxes have broken

the original end-to-end nature [194] of the Internet. Firewalls are exam-

ples of such boxes and some protocols, such as Skype for Internet tele-

phony, have been known to work their way around the firewalls. NAT

devices also involve the functionality of a firewall to filter out traffic flows

originating from the Internet, but NATs also support address aggrega-

tion with private address realms. The aggregation requires the NAT mid-

dleboxes to couple transport and network layers tightly16 as the transla-

tion information is stored into transport-layer ports. As NATs constrain

connectivity to the client-server model and private address realms make

unique identification of hosts based on IPv4 addresses impossible, devel-

opment of peer-to-peer applications has become more complicated. Con-

sequently, several solution to work around the issues with NATs have

emerged.

RFC 2775 [48] describes two practical solutions to achieve better in-

teroperability with private address realms. In the first approach, split

(horizon) DNS can be used to give a more concise view of a site from the

view point of FQDNs. The idea is that the DNS returns private addresses

for host name queries originating from the private address realm of the

site and public addresses from outside. Thus, the host names are con-

16As mentioned also by others [244, pp. 53-54], transport and network layers are
not only coupled at end-hosts but also at intermediary hosts as a result of NATs

33

Challenges and Solutions in the TCP/IP Architecture

sistent but map to different addresses depending on the location of the

querying host. Nevertheless, this approach does not comply to Internet

transparency from the view point of addressing and presents issues for

applications caching addresses. The second approach is not problem free

either. Application-Level Gateways (ALGs) can modify application-layer

protocols to retrofit them with NATs. For example, an ALG is needed

when FTP is used in active mode because the FTP server creates a new

TCP connection back to the client located behind a NAT device. ALGs can

be problematic especially when they are not properly implemented [50, p.

12]. The complexity of ALGs have been investigated and alternative type

of NAT architectures have been proposed [37] but never adopted.

By default, NATs block transport-layer connections origination from the

Internet unless the operator of the NAT manually open certain ports.

However, this requires some expertise from the user and the port can be

forwarded only a single host inside the private address space due to mul-

tiplexing reasons. For instance, only single host can serve the standard

HTTP port for the outside.

To avoid the manual tweaking of the NAT device, two approaches have

emerged. First, applications can employ a Universal Plug and Play (uPnP)

library to request opening of certain ports in NATs [78]. The protocol is

widely supported by different NAT device vendors, albeit is can some-

times be disabled by default. It is also supported by various manufac-

tures of home multimedia devices and smart phones because it supports

broadcast-based discovery of local-area services17. As a second approach,

IETF is standardizing Port Control Protocol (PCP) [238]. Among other

things, it improves upon uPnP as it can infiltrate through multiple cas-

cading NAT devices.

As vendor-specific solution, “Back to my Mac” (BTMM) service [56] sup-

ports NAT traversal for OS X with the help of uPnP [78] and other proto-

cols. BTMM introduces topologically-independent, ULA-based addresses [100]

that can be used for addressing hosts behind NATs. The approach em-

ploys DNS to support end-host mobility and easier naming of hosts, and

a combination of Kerberos, IKE and IPsec to facilitate security. BTMM

inherits its restriction from uPnP; NAT traversal fails when uPnP is dis-

abled from the NAT or in the presence of cascading NATs. Also, BTMM

supports only IPv6-capable applications.

17Another service discovery protocol from the IETF is Service Location Protocol
(SLP) [89]

34

Challenges and Solutions in the TCP/IP Architecture

In uPnP and PCP, the idea is that the application requests the NAT

to open and forward a port to it. As the success of this depends on the

protocol support in the NAT(s), alternative approaches have emerged.

The protocol family of Session Traversal Utilities for NAT (STUN) [191],

Traversal Using Relay NAT (TURN) [147] and Interactive Connectivity

Establishment (ICE) [190] works around the issue and penetrates through

the NAT box(es). The trick is that two communicating applications simul-

taneously send transport-layer datagrams to each other to create state in

their NAT middleboxes, thus bypassing ingress filtering in NATs [207].

As deployed legacy NATs do not operate in a uniform way [17, 85], the

success NAT traversal is not always guaranteed and especially TCP [58]

has somewhat slimmer chances than UDP in practice. However, the UDP-

based transport has a higher chance of succeeding than TCP [86, 75] in

practice.

As a brief summary of the protocol family, an end-host uses STUN to

learn its address-port mappings from STUN infrastructure deployed in

the Internet. ICE protocol uses and extends the STUN protocol format

to support penetration of on-path NATs. The end-host may also utilize a

TURN relay to guarantee successful NAT traversal in the event the pene-

tration fails. While ICE restores end-to-end connectivity, it can be argued

that is does not support Internet transparency in an architecturally clean

way as it does not untangle addresses from ports. ICE is pervasive in the

sense that it requires the application to use its APIs and it changes the

semantics of the application-layer protocol as the application exchanges

the address-port mappings, triggers the ICE penetration procedure and

has to be able to demultiplex STUN traffic from its own application-layer

traffic. Nevertheless, the protocol family has been adopted to SIP [38],

P2P-SIP [110] and Real Time Communication on the Web (RTCWEB) [8],

to mention few examples.

Teredo [101] is less pervasive than ICE because application do not need

modifications for it18. In Teredo, the application uses a special surro-

gate IPv6 address when NAT traversal is desired. The local Teredo soft-

ware tunnels transport-layer traffic sent to the virtual address over UDP

and tries penetrate NAT devices transparently from the application. The

penetration procedures are similar as with ICE albeit Teredo has some-

what lower probabilities for establishing direct end-to-end connectivity.

18On older Windows versions, the application had to enable Teredo explicitly
using a socket option

35

Challenges and Solutions in the TCP/IP Architecture

Teredo supports Internet transparency in an architecturally cleaner way

as Teredo introduces new virtual namespace for end-hosts without de-

pendencies to transport-layer ports. However, Teredo addresses are not

persistent because address is formed in a topological-dependent manner.

As further limitations, the Teredo requires an IPv6-capable application at

both ends and the tunneling involves a small penalty to the MTU.

To restore Internet transparency, an early research-oriented approach

called 4+4 [222] extends the NAT-based architecture of the Internet. In

the approach, a host is uniquely identified both using its private IPv4

address and public IPv4 of its NAT. At the network layer, 4+4 employs

stateless IPv4-over-IPv4 tunneling to store both of the address types and

4+4-upgraded NAT devices translate the addresses as illustrated in figure

XX.

XX draw figure

The described implementation intercepts DNS requests at the client-

side host, injects new requests for 4+4-specific Service Record (SRV) records

to detect 4+4-capable servers. For 4+4-capable servers, the implementa-

tion caches the mappings between a private and public address but it

modifies the DNS responses so that the originating legacy application re-

ceives the private address. This way, a site can choose its internal ad-

dressing convention and changing of the ISP can become easier. Also,

private address spaces aggregate better and thus improve routing scala-

bility.

As another research solution to Internet transparency, mobility and mul-

tihoming, Delegation-oriented Architecture (DoA) [232] proposes an ar-

chitecture based on core-edge elimination. The idea is to introduce a new

shim layer at the end-host between existing transport and network layers

that translates upper-layer identifiers to routable locators. The approach

is based on tunneling; the identifiers are stored in an additional header

inserted between the transport and network layers. The architecture re-

vives Internet transparency with its persistent identifiers and the tun-

neling approach shields application port numbers from changes of NATs.

Further, DoA-capable NATs are required to rewrite only IP addresses in

packet headers and use the additional identifier information from DoA

headers as additional demultiplexing tokens.

DoA requires the identifiers to be globally unique but not necessarily

cryptographically derived. The identifiers are flat and such non-hierarchical

identifiers are difficult to look up from the DNS, so the architecture re-

36

Challenges and Solutions in the TCP/IP Architecture

lies on a DHT service for storing them. DoA introduces extensions to the

Sockets API to accommodate the 160-bit identifiers as they are cannot fit

existing structures.

However, what really makes the DoA architecture distinct from many

other proposals is the support for secure, loose source-address routing. To

accomplish this, an end-host announces its own identifier as well a chain

of identifiers of its middleboxes in DHT. In order to the reach the end-

host, other hosts have to follow the chain in the specified order. Each of

the middleboxes include cryptographic information in the traversed pack-

ets so that the end-host can verify the chain. This facilitates both on-path

and off-path intermediaries that can support, for instance, virus scan-

ning and firewall services. Off-path intermediaries are useful especially

for DoS prevention. However, the trade off of such delegation is a fairly

complex DHT registration procedure and extra interaction between the

intermediary hosts.

NUTSS [87] architecture is also based on core-edge elimination but un-

like DoA it argues that applications should be using more aggregatable

Universal Resource Identifier (URI)-based names instead of flat names.

A fully-fledged NUTSS introduces a new API for network applications

but the implementation supports also a legacy-compatible mode where

a shim layer translates routable IP addresses from the application layer

into NUTSS-based identifiers. Similarly as DoA, also this architecture

achieves mobility, multihoming and Internet transparency by providing

applications with persistent identifiers. However, it also holds a promise

for supporting also anycast and multicast.

In NUTSS, transport-layer connections are ephemeral and recreated on

demand. In fact, NUTSS acts as network-application framework that ab-

stracts away the lower-layer details and paves way for extensibility as a

NUTSS-capable end-host can negotiate the support for different protocols

(IPsec, TLS, IPv6) using the control plane of NUTSS. The control plane

supports steering of middleboxes; similarly as in DoA, the end-host regis-

ters explicitly to middleboxes that can reside on or off path19. In contrast

to DoA, the “boxes” handle either control and data plane. Control plane

boxes are handled by off-path “p-boxes” that are organized into an over-

lay and can be used to negotiate, for instance, access-control policies. M-

boxes are typically on the path and forward data plane when is has been

19The explicit negotiation between all intermediaries in both DoA and NUTSS
appears somewhat reminiscent to circuit-switched networks

37

Challenges and Solutions in the TCP/IP Architecture

allowed by p-boxes. As the p-boxes and m-boxes communicate with each

other, they can also support distributed firewalls for the problematic cases

where routes between two end-hosts use asymmetric routes. NUTSS also

suggests the use of STUN to establish direct end-to-end communications

in face of legacy NAT devices.

The crux of the NUTSS architecture is the deployment of the new in-

frastructure. To mitigate this, NUTSS proposes a three phase deploy-

ment plan. In the first stage, public p-boxes are deployed and few end-

host applications employ NUTSS with the NAT traversal capability as

the driving “killer application”. Then individual networks deploy their

own p-boxes and end-hosts learn about their existence via DHCP exten-

sions. Finally, legacy middleboxes are replaced with m-boxes that can also

proxy communications for remaining legacy end-hosts.

2.2 Heterogeneous Addressing

One of the fallacies in distributed computing is to assume that the net-

work is homogeneous [82]. This applies especially to addressing, now

that IPv4 and IPv6 will have to co-exist during the undetermined transi-

tion period to IPv6. Global adoption IPv6 has not been the only suggested

way to deal with heterogeneous addressing as some approaches advocate

replacing of IP addresses with DNS-based names in applications. Few

renegades have embraced heterogeneity instead of homogenization of ap-

plication layer addressing.

2.2.1 Challenges

Heterogeneous addressing as introduced, for instance, by the separation

of IPv4 and IPv6 is problematic for a few reasons. For instance, access

control rules double both at the end-hosts and middleboxes, leaving more

room for human error. IPv4 address literals are easily forgotten in soft-

ware configurations of a site and will be discovered only when the site

transitions completely to IPv6 (or renumbers itself otherwise). Writing of

networking software is more complicated as developers have to deal with

the dual versions for DNS and for the actual data transfers. The develop-

ment is especially hard because the Internet is still in transition phase:

a client may discover IPv6 addresses for a server but it is not guaranteed

that the client-side network is capable of support IPv6 or that the indi-

38

Challenges and Solutions in the TCP/IP Architecture

vidual service at server supports IPv6. The client can try each compatible

address pair sequentially until it finds a working combination but the user

may have aborted the connection by then due to the additional timeouts.

Thus, developers may be tempted to avoid IPv6 altogether or they have

to employ parallelization for network connections, which further creates

unnecessary traffic to the Internet.

It could be stated that heterogeneous addressing involves a challenge

similar to the multihoming with its multiple addresses. However, hetero-

geneous addressing is even more pervasive at the application layer as de-

velopers as the Sockets API does not insulate applications from different

address formats. Naturally, network application frameworks and other

middleware can be used for insulation but a host of software has already

been written without them.

Finally, it is worth mentioning that the heterogeneity does not only stem

from the introduction of IPv6. For instance, wireless sensor networks

comprise of constrained devices with limited memory, processor and bat-

tery lifetime. In such environments, IP-based stack has been considered

too inefficient and sensor-networking protocols in many of the solutions20.

However, some attempts to assimilate sensor networks with IPv6 have al-

ready emerged [136, 200].

2.2.2 Solutions

While it is possible to implement software agile to accommodate both IP

versions, it appears that a substantial portion of networking software is

still oblivious to IPv6 and address literals are hard coded into software

configurations. Therefore, it can be argued based on existing practices

that agility for different address families is difficult to achieve in the

present TCP/IP architecture. Thus, mono-cultural attempts to unify ad-

dress formats have emerged, for instance with IPv6-mapped [99, p. 10]

addresses as a replacement to IPv4 addresses but have failed [152].

The IETF community has invested a lot of energy for global IPv6 adop-

tion. As a result, a number of different transitioning solutions have been

introduced. To mention a few of such approaches that would facilitate

IPv6 at the application layer, for instance, Teredo has been described

earlier and other tunneling mechanisms, including manually configured

IPv6-over-IPv6 tunnels, 6-to-4 Tunneling Protocol and its extension IPv6

20For instance, the proprietary Z-wave protocol for sensor networks is not based
on TCP/IP

39

Challenges and Solutions in the TCP/IP Architecture

Rapid Deployment on IPv4 Infrastructures (6RD), Multiprotocol Label

Switching (MPLS) (MPLS)-based tunneling, Network Address Transla-

tion/Protocol Translation (NAT-PT) and its enhancement NAT64. Instead

of iterating through all of these standards, we point the interested reader

to a overview [104, p. 22-47] and here we focus instead on NAT64 as it

has lately received a lot of attention in the IETF.

In NAT64 [23], the client-side host (or its network) supports only IPv6

and server supports only IPv4. To facilitate communications between

these to incompatible address families, the client is located behind a NAT

device supporting the proposed extensions and is using a DNS server (or

proxy) supporting DNS64 [24] extensions. When the client looks up the

address of the server over IPv6 from the DNS, it notes that the server has

only a A record configured and decides to synthesize an AAAA response

based on a special IPv6 prefix and the address of the server. This avoids

the address incompatibility issue and the NAT64 device can translate

IPv6 packets from the client to IPv4 packets towards the server. As other

benefits, this approach introduces IPv6 to the client-side networks, where

NAT deployment typically prevents it, and homogenizes, e.g., client-side

access control lists to IPv6. As a drawback, the approach fails with soft-

ware that employs IPv4 address literals [13, p. 14].

As an alternative to assimilate applications to use IPv6 addresses, NUTSS

architecture as described in the previous section proposes URIs as identi-

fiers in its Sockets API extensions. Others have also proposed DNS-based

identification [79, 55]. One of most recent ones, Name-based Sockets

(NBS) [224] is still somewhat immature, but being standardized in the

IETF. Unlike NUTSS, takes a bit more conservative approach and uses

only the FQDN portion as persistent host identifiers. In a nutshell, NBS

suggest new Sockets API structures that can hold names instead of ad-

dresses and the name resolution occurs inside NBS module, not in the ap-

plication. Thus, NBS offers a solution for homogeneous naming by reusing

the existing DNS namespace.

NBS supports also mobility and multihoming. It defines its own control

plane for mobility management that tries minimize round trips by piggy-

backing it into data-plane packets. This design choice limits it to IPv6

because IPv4 options appear to be dropped by a number of existing fire-

walls [150, p. 339]. Other design constraints exist as well, for example,

modifying of all application to use NBS extensions is not trivial and some

hosts do not have names in the DNS [214, p. 16]. RFC4177 [103, pp.

40

Challenges and Solutions in the TCP/IP Architecture

20, 31] mentions few other constrains with FQDN-based names. Firstly,

services typically employ load balancing by attaching a single FQDN to

multiple addresses that belong to different hosts. This means that the

FQDN does not uniquely identify a single host. Secondly, FQDN-based

identifiers may not survive business mergers or acquisitions as the do-

main name may change21.

In contrast to the attempts to unify applications to use either FQDNs

or IPv6 addresses, the abstract Plutarch [59] architecture embraces het-

erogeneous addressing. Plutarch does not try to modify existing Inter-

net architecture but rather nests network end-hosts and intermediaries

into two abstract entities. The smallest entity is a context that refers

to a set of hosts with homogeneous networking capabilities, such as ad-

dresses, packet formats, transport protocols or a common service for name

look up and storage. As two concrete examples, the context can be a pri-

vate address realm or an autonomous system. Then, an interstitial func-

tion chains two heterogeneous contexts together to enable inter-context

communications. As examples of interstitial functions, uPnP is its real-

ization for private address realms and BGP routing procedures for au-

tonomous systems. The interstitial function translates addresses and

names, transport-layer protocols or even acts as an ALG to modify data

for more suitable formats for, e.g. hand-held devices, according to needs of

the underlying context. While this is nothing new, the novelty of Plutarch

is that proposes a universal programmable API, for end-hosts to chain

contexts with interstitial functions with the ambiguous goal of achieving

communications across heterogeneous networks. The authors present a

sketch of the API for Plutarch but admit it is still a straw-man approach

(as it remains unimplemented).

2.3 Insecure Addressing

Insecure addressing is present at all layers of the network stack. In

this section, we briefly introduce the challenges and number of solutions.

The solutions are categorized to client-side and server-side authentica-

tion, communication privacy and availability. It is worth noting that we

merely scratch the surface; many interesting topics, such as anonymity,

object/data-centric security, intrusion detection and quantum cryptogra-

21While the reuse of FQDN-based identifiers avoid new infrastructure, it could
be further argued FQDNs are domain specific and a host should not preserve its
FQDN it moves to another domain

41

Challenges and Solutions in the TCP/IP Architecture

phy are worth of another dissertation, hence will be out of scope.

2.3.1 Challenges

Insecure addressing is present at the network and link layer in the TCP/IP

architecture. IP addresses, as well as MAC addresses, can be character-

ized that they are forge because typically they typically do not include a

secure verification of the ownership. When the attacker is the same net-

work as the victim, the attacker can change its address to correspond to

the MAC or IP address of the victim host. As an alternative, the look-up

procedures could be intervened. With MAC addresses, the attacker can

also employ ARP spoofing. With IP addresses, the attacker could imper-

sonate as the DHCP server or try to send forged DNS responses. Alter-

natively, applications resorting solely to IP addresses as their only access

control method can be tricked to receive traffic from other IP addresses on

multihoming hosts [214, p. 15, 19] when the underlying host employs so

called weak end system model [39, p. 63].

2.3.2 Solutions

While IPv4 is prone to ARP spoofing, the issue is resolved in IPv6 using

SEcure Neighbor Discovery (SEND) extensions [12]. However, neither

IPv6 or the extensions are largely deployed. As MAC and IPv6 addresses

still remain trivial to forge, they are unideal as authentication tokens

and the problem is pushed up in the networking stack in many scenar-

ios. As transport-layer security are not really deployed in the Internet,

the authentication is usually implemented at the application layer. The

layer where security is implemented defines also the granularity, that is,

application-layer solutions typically enjoy fine-grained granularity than

solutions operating on lower layer.

Instead of modifying individual applications to support security, low-

level solutions can be used to protect entire legacy networks more effi-

ciently, albeit not without trade offs. For instance, IP-based firewalls or

Virtual LAN (VLAN) tagging in routers can be used to isolate networks

from each other. However, they offer little protection against “insider at-

tacks” [31, p. 12-13], i.e, a user can be tricked to install malware on the

underlying computer that bypasses the firewall and further infects the

entire network. In other words, such firewalls offer only topological pro-

tection. This can be challenging with mobile hosts without permanent IP

42

Challenges and Solutions in the TCP/IP Architecture

addresses and, in practice, it is common to use a VPNs or web proxies to

access firewall protected intranets. Also, another challenge with firewalls

are multihoming sites that can result in asymmetric paths.

Contrary to low-layer security, a benefit of application-layer security is

that the application is aware of security and can convey this information

to the user. Typically, it is also easier for the user to carry the security cre-

dentials, such as passwords, However„ application-layer security inherits

all of the weaknesses of the lower layers. Implementing security redun-

dantly at multiple layers offers more protection but can have a negative

impact on performance.

In practice, a number of factors limit the impact of at attacks against

addresses, at least when the attacker is off the communications path. For

instance, the NAT devices drop new traffic flows arriving to the private

address realm by default. Then, as the identity and location of a host are

coupled, a malign host cannot claim to be the victim host, at least when

it resides in another network than the victim. Source address spoofing

can be difficult achieve as many routers and firewalls drop packets orig-

inating from the incorrect network. However, a compromised router or a

WLAN access point allows man-in-the-middle attacks and the mentioned

measures cannot protect against such on-path attacks.

Client-side Authentication

A client-side host can be authenticated with the server or any of the on-

path middleboxes, such as local wireless access point, router or firewall,

or to a server. Section 2.1.2 also mentioned two research-oriented ap-

proaches, DoA and NUTSS, that supported off-path intermediaries, so

they will not further discussed here.

As MAC-based and IP-address based access control easy to circumvent,

they are fortified with other means. For instance, a host can generate a

private-public key pair and hash the public part of the key along with

some additional parameters to generate a self-certifying IPv6 address.

This technique is called CGA [18] and is employed in IPv6 by SEND [12].

While SEND protects the ownership of an address, it does not prevent a

host from claiming an unreserved address, possibly even belonging to en-

tirely different topology. For instance, such exploitation can be prevented

with Source Address Validation Architecture (SAVA) [241] by verifying

source addresses of egress packets at the varying levels of routers or by

requiring the end-hosts to cryptographically verify the packets they send.

43

Challenges and Solutions in the TCP/IP Architecture

At home, it is common to employ password-based authentication for

the wireless access point using Wi-Fi Protected Access version 2 (WPA2)-

based security [20]. For organizational and corporate use, a myriad of

protocols exist [21, 159, 189, 43, 3, 14] both for wired and wireless authen-

tication. In such environments, the user is usually directed to web portal

to input user credentials. Further, the authentication may be valid across

valid multiple web-based services if the sites collaborate with Single Sign-

On (SSO). Again, various different schemes to implement SSO exist [206,

90, 216].

Few other techniques could be mentioned as well. In Identity-based

Cryptography (IBC), any publicly-known string, such as email or even

IP address, can be used to represent the user’s public key for signing or

encryption [22]. Most of the complexity of public key management and

certification is hidden into a Trusted Third Party (TTP) service. In con-

trast, purpose-built keys [40] require no infrastructure but are merely

ephemeral identifiers based on public keys that merely assure two com-

municating end-points remain the same throughout communication ses-

sion [144, p. 9]. Widely deployed Trusted Platform Module (TPM) [121]

is designed for storing of sensitive information, such as private keys, on

tamper-proof hardware residing on end-host. This way, applications can

request the hardware for signatures but a compromised software cannot

steal the private key.

Server-side Authentication

TLS [61], and its predecessor, SSL [80], are the de facto way for securing

and authenticating TCP transactions especially in the web. While TLS

supports also client-side authentication, only the server is typically au-

thenticated by the client and some of the methods described in previous

section are used for authenticating clients. TLS authentication is based

on certificates signed by Certificate Authoritys (CAs) in the Public Key

Infrastructure (PKI) hierarchy. Consequently, TLS meets the challenge to

avoid server-side impersonation attacks in an address-independent way,

albeit not offering any remedy to non-persistent or heterogeneous ad-

dressing. Koponen et al [128] have implemented client-side mobility ex-

tensions for OpenSSL, an open-source implementation of SSL/TLS, but

the extensions were not officially adopted to the implementation nor stan-

dardized.

TLS runs on top of TCP. Followed by the TCP handshake, TLS hand-

44

Challenges and Solutions in the TCP/IP Architecture

shake requires two round trips in the basic case or one round trip when a

connection is resumed, i.e., when the client has cached information on a

previous session22. TLS requires a different port when a service supports

both insecure and TLS-secured communications to avoid man-in-the mid-

dle attacks [61, p. 34]. The application to be modified to use the TLS-

specific APIs instead of Sockets API and in this way, the application is al-

ways aware when the TLS-based security is being utilized. The APIs are

implementation specific and number of implementations exist, including

open-source libraries OpenSSL and GnuTLS.

dTLS [187] offers protection for UDP-based communications. In essence,

it is an adaptation of TLS to the limitations of UDP that does not guaran-

tee packet delivery nor ordering. Therefore, it’s security and addressing

characteristics are the same as with TLS. While the datagram-oriented

nature of UDP does not prevent applications from sustaining address in-

dependent data flows, security is still a concern. Thus, secure extensions

to support mobility in dTLS have been defined [198].

FQDN-based names can be considered as means to authenticate ser-

vices but basic DNS offers little protection particularly against man-in-

the-middle attacks. To fill in this gap, DNSSEC [11] cryptographically

authenticates DNS responses, albeit it does not really assure anything

about the “identity” of the service (which is usually accomplished with

TLS). With support for certificates, DNSSEC has the potential to be used

as a PKI when it is more widely deployed. It is also worth noting that

hosts may also dynamically update their own records in the DNS [230] in

addition to look up and extensions for securing the updates exist [234].

Protection of Communication Content

A malign host can compromise communication by different means. It may

be able to breach the confidentiality of the data by reading the content

of datagrams, modify individual datagrams, forge the originator of the

data or replay recorded datagrams. TLS and Datagram Transport Layer

Security (dTLS) as already described in the previous section offer sup-

port for such security at the application layer, as well as SSH. Finally,

IPsec [117] is network-layer security solution.

In SSH, a server create a private-public key pair for itself and is authen-

ticated using its public key. A client authenticates itself to the server us-

22As a curiosity, Google has incorporated a TLS extension to its Chrome web
browser [142] to permanently fix the round trips to one for Google services and
has promoted also zero round trip extensions [141]

45

Challenges and Solutions in the TCP/IP Architecture

ing a username-password combination or with a user-specific public key.

Instead of showing entire public keys, SSH prompting employs as fin-

gerprint, i.e., a hash calculated over the public key, for the convenience

of the user. SSH secures communications between the client and server

using symmetric keys that are created using a Diffie-Hellman (DH) key

exchange. Implementations of support at least terminal sessions but typ-

ically also VPN-like tunneling of any kind traffic that has to be set up

manually by the user.

SSH requires a client-side and server-side application to be installed

but does not require any additional infrastructure, which has largely at-

tributed to its wild success. Albeit is has optional DNS records [196] for

storing fingerprints, they are not commonly used and therefore SSH offers

weaker security based on Leap of Faith (LoF) [15, p. 5]. The weakness is

that is prone to man-in-the-middle during the first connection attempt,

during which the client learns and caches the public key corresponding to

the host name and IP address of the server. When no prior key exist or

they key has changed for the server, SSH client prompts and warns the

user. This is a crucial aspect because the user can verify the key of the

server but most importantly protects against further attacks: the middle-

man has to be on the path every time or otherwise will be exposed, thus

inflicting asymmetric cost [15, p. 5] to the attacker.

Besides asymmetric cost, LoF is relies on temporal and spatial separa-

tion [15, p. 3,5]. Temporal separation guarantees only the server remains

invariant but does not guarantee that it was the correct server the first

time. Spatial separation assures that the host is on a specific communi-

cation path. In the case of SSH, this means that public key of the host is

coupled with its host name (or IP address). If this binding changes, the

SSH connection fails. Therefore, it can asserted that security based on

spatial separation as employed by SSH does not really support persistent

addressing. Koponen et al [128] have implemented client-side mobility

extensions for OpenSSH, an open-source implementation of SSH, to recre-

ate new TCP sessions with the server. Unfortunately, the extensions have

not been adopted to the implementation nor standardized. As an alterna-

tive approach, Winstein et al [240] have redesigned SSH from scratch to

sustain mobility for terminal sessions and to support better interactivity

with the user on top of UDP.

IPsec offers network-level protection for data flows. Compared to SSH,

applications are not typically aware when the communication is secured.

46

Challenges and Solutions in the TCP/IP Architecture

IPsec is based on symmetric key cryptography based on unidirectional

keys that are denoted as Security Associations (SAs). As setting up man-

ual keys can be cumbersome for users, this task is usually automatized

using a key-management protocol that negotiates they keys dynamically

when an application sends traffic matching to a certain Security Policy

(SP).

IKEv2 [67] is typically used as gateway based VPN that does not re-

quire any changes to the server side. The protocol has two phases where

the first phase is DH key exchange that set ups symmetric keys to se-

cure a control plane. The second phase uses the control plane to set up

symmetric keys for the data plane which is a IPsec-based tunnel between

the client and the gateway. Basic IKEv2 does not support end-host mo-

bility or multihoming but Mobile Internet Key Exchange (MobIKE) [66]

extensions fill in this gap for the client side.

The basic version of IKEv2 based on “strong” authentication that essen-

tially requires a separately deployed PKI. To avoid the management over-

head and scalability concerns involved with PKI, so called Better Than

Nothing Security (BTNS) [217, 237] have been standardized. BTNS offers

two methods of operation with their own trade offs. Stand-Alone BTNS

offers a lowest level of protection that can be subverted by a man-in-the-

middle attacker. This method merely guarantees that the other entity

does not change during communications and is based on anonymous en-

cryption [15, p. 4]. As such it is mostly suitable to be used with public

services in the absence of a stronger authentication at the network layer.

Channel-bound BTNS avoids middleman attacks but assumes that the

application layer supports strong authentication, thus making strong au-

thentication unnecessary at the network layer. To communicate the suc-

cess or failure of this authentication to IPsec, a separate API between

the application and IPsec is needed [217, pp. 6-8] to “bind” the security

mechanisms together which is also referred as channel binding. Further,

the same API can be used for fortifying BTNS-based security to introduce

transport-layer specific SAs. This process of connection latching [236] en-

sures fate sharing so that IPsec associations are purged when the corre-

sponding transport-layer connection terminates in order to avoid certain

abuse [179, pp. 342-343]. As the application can prompt the user and

cache information on unauthenticated credentials on behalf of BTNS, this

method can achieve LoF security similar to SSH [217, p. 23],[179, p. 347].

47

Challenges and Solutions in the TCP/IP Architecture

Prevention of Unwanted Traffic

Unsolicited traffic is a nuisance at many levels of the networking stack. At

the application layer, email spam23 is nuisance that involve directly the

end-users. Traffic flooding using Denial of Service (DoS) or Distributed

Denial of Service (DDoS) [154] does not directly involve the end-users but

is visible to them a degradation of QoS. In this section, we take a brief

glance at few solutions to email spam and DoS prevention.

A recent survey [51] describes a number of spam prevention techniques.

To mention few examples, black listing assumes that email relays are be-

nign by default and email relays end up to the blocking list when they

are reported of sending spam. White listing works exactly in the opposite

way and assumes everyone is untrusted by default. It is common to em-

ploy machine learning techniques, such Bayesian email filtering, either

at email clients or by the email service provider in the case of web-based

email. In greylisting [133], a server receiving email will request the orig-

inator to retry after a while and this is effective as spam relays do not

usually retry.

The spam problem has been analyzed also from an economical perspec-

tive by others. Goodman et al [83] model costs for spam prevention with

human-interactive proofs24 and computational puzzles. The authors pre-

fer the latter method and show that it is not necessary to persist a proof

or a puzzle forever for each email message sent but it merely suffices to

apply it only in the beginning for every Nth message. Finally, Levchenko

et al [115] show that the payment infrastructure is the bottleneck of the

spam value chain and argue that spam could be tackled most efficiently

by political means, i.e, enforcing a payment tier.

DoS attacks can be migrated, for instance, with Packet Level Authentication

(PLA) [53, 140]. PLA introduces a new shim layer between transport

and network layers at end-hosts. When a host sends a packet, the shim

layer signs the packet and attaches a certificate25. This way, PLA-capable

routers can authenticate and authorize the packet based on TTP that cer-

tifies the public keys of the end-hosts. For instance, this facilitates source

address verification and DoS attacks can be prevented by revoking of the

certificate. As such, PLA does not change the addressing model of the In-

ternet in any way but remains compatible with other approaches that, for

23Countermeasures for VoIP spam [51] are out of scope
24Also known as Completely Automated Public Turing test to tell Computers
and Humans Aparts (CAPTCHAs) or Reverse Turing Tests
25Alternatively, the certificate can be omitted from subsequent packets if the
routers cache it

48

Challenges and Solutions in the TCP/IP Architecture

instance, implement end-host mobility [139, p. 29].

2.4 Deployment Considerations

RFC 5218 [215] characterizes a number of properties of successful proto-

cols. One critical factor is that the early adopters should get the benefits

of using the protocol. As in Mobile IPv4 or IPv6 (MobileIP) and IKEv2,

one way to meet this goal is to employ gateways or proxies that terminate

the client-side connections so that users there is no dependency on server-

side deployment. On the other hand, avoidance of mandatory, additional

infrastructure altogether can also be a recipe for success as it has been

the case for SSH.

It is should also be noted that IETF always mandates a security consid-

erations from the standardized protocols. This is required even when the

target scenario would be trusted – wildly successful protocols can easily

become reused beyond their original purpose [31, p.5].

While full economic analysis is out of scope, it is difficult to escape it en-

tirely in deployment considerations. Regarding to routing scalability, Jen

et al [108, p. 4] argue that cost of deployment is better aligned with the

benefits with core-edge separation because it is the transit networks that

are facing the scalability problem. However, a deployment at the edges

of at least two sites is required even with a core-edge separation to gain

some benefits of the adoption. Then, the only practical difference to core-

edge elimination is that it has to be deployed for all end-hosts of the two

sites. Thus, adoption of a elimination approach can be considered slower

and, as suspected by Jen et al, may arrive too late as routing tables may

exceed a critical threshold. In the context of this dissertation, elimination

approaches will nevertheless be accepted as a viable technical solution for

site renumbering despite of this claim.

Another protocol design consideration is incremental deployment with-

out a flag day. This usually requires backward compatibility on end-hosts,

even with IPv6 stacks which are already considered legacy [153, p. 28].

For realistic deployment of a protocol, the constraints as posed by mid-

dleboxes should be considered in the protocol design. For instance, the

Internet is still ossified by IPv4 [7, p. 206] even though IPv6 is slowly

making some progress26. NATs and firewalls pass only TCP and UDP

26Around the globe, the world IPv6 day was organized for the second time on 6th
of June 2012 to permanently enable IPv6 in the products and services of major
ISPs, home networking equipment manufacturers and web companies

49

Challenges and Solutions in the TCP/IP Architecture

traffic by default [214, p. 16], and in some cases only HTTP traffic on

top of TCP [184]. They might also allow only one side of the communi-

cations to initiate which further requires NAT penetration procedures in

the case of P2P applications. Some firewalls drop also ICMP messages

and majority of firewalls drop IPv4 options but TCP options are not usu-

ally filtered. Designing protocols that pass IP address literals by default

is a condemned idea due to ubiquitous NATs.

A common misnomer about DNS is that deploying new records to DNS

is difficult because it requires modifications to DNS software. On the

contrary, modern DNS software is actually quite flexible. For instance,

the most popular DNS service implementation, Bind, supports non-native

DNS records types specified in a (hexadecimal) binary format.

2.5 Host Identity Protocol

As most of the collection of articles for this dissertation are based on HIP,

it will be introduced in more detail than the other protocols in this section.

HIP [167] is an approach based on the paradigm of identity-locator split

and the conventional use of HIP classifies it to core-edge elimination cat-

egory. It introduces a cryptographic namespace to identify end-hosts that

is managed by a new shim layer between transport and network layers.

HIP working group has been standardizing the protocol in the IETF

and is in the process of moving the experimental RFCs [157, 158, 112,

138, 137, 163, 162, 124] to the standards track27 during the time of this

writing. In a nutshell, the most important updates were related to im-

proved security to facilitate dynamic negotiation of the employed crypto-

graphic algorithms and to introduce Elliptic Curve Cryptography (ECC)

extensions [183].

2.5.1 Persistent Identifiers

HIP achieves persistent identifiers by introducing a new namespace for

the transport and application layers that is decoupled from the network

layer addresses. The identities are managed by a new logical layer be-

tween transport and network layers28 that manages the bindings between

the identifiers and locators as illustrated in figure XX.

27http://datatracker.ietf.org/wg/hip/charter/
28In RFC 5533 [168, p. 9] terms, HIP is located between IP endpoint sub-layer
and IP routing sub-layer

50

http://datatracker.ietf.org/wg/hip/charter/

Challenges and Solutions in the TCP/IP Architecture

XX FIX: stack figure

The new namespace is based on public-key cryptography. According to

HIP terminology [157, p. 5], an abstract identity is referred as a Host

Identity, where as a Host Identifier (HI) refers to concrete representa-

tion format of the corresponding identity, that is, the public key of a host.

The end-host is responsible of creating the public key and corresponding

private key for itself. This way, an HI is self-certifying and statistically

unique.

A HIP-capable host creates two other compressed representations of the

HI as public keys are of variable length and, thus, unsuitable to be used

in fixed-length headers at the HIP control plane and incompatible with

legacy IPv4 or IPv6 applications. The format for the control plane and

IPv6 applications is the same: the host calculates a hash over the HI to

fit it into an IPv6 address and sets a special 28-bit ORCHID prefix [164]

for the generated IPv6 address called Host Identity Tag (HIT). For IPv4

applications, the host assigns locally an IPv4 address, called an Local-

Scope Identifier (LSI), that acts as an alias for the HI29.

A HI and also the corresponding locator can be stored in the DNS [163]

or in any other suitable directory, such as DHT [6, 227]. However, a prac-

tical limitation with the hierarchical DNS is that flat identifiers as em-

ployed by HIP cannot be reverse look upped from the DNS unless some or-

ganization takes responsibility of the entire HIT prefix in the future [182].

As reverse look up is not guaranteed, a legacy application that has cached

a HIT may not be able to connect to it especially when the HIT belongs

to a host located in a different domain. The caching issue can raise from

the use of address literals in configuration files or when the HIT is passed

from host to another in an application-layer protocol as a referral.

Applications assume stable addresses [214, p. 11] as the Sockets API

does not expose the TTL values from DNS to applications. In the absence

of a deployed solution for this, the identifiers as introduced by HIP can

be used to better meet this expectation even in unmodified legacy appli-

cations.

In HIP terminology, the host that first contacts the other (by delivering

a datagram) is called the initiator and the contacted host is called the

responder. In other words, typically the initiator is the client-side host

and the responder is the server-side host. The roles are used by the state

29The LSIs are assigned from the private address blocks but implementers have
been also experimenting with the unassigned 1.0.0.0/8 prefix. See also [179] for
security advice on LSI implementation

51

Challenges and Solutions in the TCP/IP Architecture

machine of a HIP implementation during the set up phase of the control

plane that is called the base exchange. It is a key exchange procedure

that authenticates the initiator and responder to each other using their

public keys. The exchange consists of four messages during which the

hosts also create symmetric keys to protect the control plane with Hash-

based message authentication codes (HMACs) [223]. The keys can be used

to protect also the data plane and IPsec [112] is typically used as the data-

plane protocol, albeit HIP can also accommodate also others [46, 220].

The base exchange includes also computational puzzle [19], that the ini-

tiator must solve. The responder chooses the difficulty of the puzzle which

allows a responder to delay new incoming initiators according to local poli-

cies. For example, the policy could be to increase puzzle size when the

responder is under heavy load.

Figure XX shows in more detail how HIP works in practice when IPsec

is employed. In this example, the functionality of the HIP layer has been

divided into a DNS proxy and a daemon to manage the HIP control plane.

A client-side legacy application first looks up IPv4 (A) and/or IPv6 (AAAA)

records of a server at the initiator. The DNS request is processed by locally

installed DNS proxy that intercepts the request. In addition to the records

requested by the application, the DNS proxy requests also HI records. To

remain compatible with legacy servers, the proxy returns the records as

they were returned from DNS when no HI records were found. However,

the DNS proxy masks the original requests when the DNS response in-

cluded HI records. To be more precise, the DNS proxy translates a HI

and returns either an LSI or a HIT depending on whether the application

requested A or AAAA records. Then the application delivers data to the

identifiers but this will be intercepted by the IPsec module that blocks the

data and requests HIP daemon has completed the base exchange. Upon

completion, the daemon set ups the symmetric keys for IPsec as nego-

tiated during the exchange. Finally, IPsec unblocks the application data

flow and encapsulates and protects the data flow between the applications

residing at the client and server.

XX FIX: draw bex+dns figure

End-Host Mobility and Multihoming

As the identifiers in HIP are not routable, HIP layer translates them

into routable addresses, or locators, as they are called in the HIP liter-

ature. The translation occurs within a new shim layer located between

52

Challenges and Solutions in the TCP/IP Architecture

the transport and network layers. As the application and transport layers

are bound to the persistent identifiers, the HIP can dynamically manage

the mappings to the network-layer locators as shown in figure XX. Thus,

HIP layer can manage both end-host mobility and multihoming [162] in a

seamless way. Multihoming is typically employed for fault-tolerance pur-

poses albeit load balancing [180, 88] has been researched as well.

XX FIX: draw a bindings figure (reference: NDSS jukka)

At the application layer, legacy applications assume one address per in-

terface [214, p. 12] despite multihomed devices are commonplace. For

such applications, HIP can be utilized to mask the multiple local ad-

dresses behind a single, surrogate identifier30.

At the lower layers, HIP-based handovers require three messages and

are all protected using an HMAC and public-key signature of the origi-

nating node. First, the mobile node announces its corresponding node of

its new set of locators. Then, the each of the corresponding nodes reply

by sending a message with a nonce (i.e, a random number) to the mobile

node. Finally, the mobile node completes the handover by echoing the

nonce back to the corresponding node. This way, a corresponding nodes

can avoid replay attacks by verifying that the mobile node has the address

it claims to have. This verification procedure is commonly called return

routability test or check which is also implicitly present already in the

base exchange as well.

HIP based handovers have some limitations that are solved with exten-

sions. Unless certain TCP extensions [63, 197] are used to optimize it,

TCP is problematic with disconnectivity periods longer than a few min-

utes because its time-out mechanisms are independent of HIP. In scenar-

ios where supporting double jump is mandatory, two communicating hosts

can lose contact with each other and a rendezvous server [137] may be used

as a contact point as it has always a fixed IP address. The rendezvous

server relays only the first control message and the communicating end-

hosts communicate directly with each other after this.

Site Renumbering

During a site renumbering, the multihoming capabilities of HIP can fa-

cilitate a more seamless transition. HIP can be suitable solution for site

renumbering because it provides persistent identifiers for the hosts within

a site. During business mergers, the identifiers can be hard-coded literals

30Naturally, this assumption holds only if the underlying host offers only a single
identifier for the applications

53

Challenges and Solutions in the TCP/IP Architecture

forgotten in various software configurations even when the domain name

of a site changes during the merger. As another site renumber use case,

the site can merely change its ISP. With a publicly addressable site, the

identifiers persist change while the underlying locators change. A site em-

ploying a private address realm for its locators in addition to HIP can have

the benefit of a aggregatable address space without limiting its connectiv-

ity because HIP provides NAT traversal capabilities with its persistent

identifiers.

When a site changes its ISP, the HIs can have a long TTL in the DNS

records. For publicly reachable locators, DNS caching issues can be avoided

by two alternative means. Either the TTL should be short or the locators

of rendezvous servers can be employed as they can have a long TTL value

in the DNS. To avoid readdressing of the rendezvous server itself during

the change of the ISP, such servers should have locators external to the

site.

Internet Transparency

As an HIs and HITs are statistically unique, they can be used to distin-

guish and identify end-hosts in overlapping private address realms. Thus,

HIP can be used to restore end-to-end connectivity in the Internet. How-

ever, IPv4-based NATs introduce two additional challenges. Firstly, they

typically block all other protocols than TCP, UDP and ICMP. This issue is

trivially resolved by encapsulating HIP and IPsec traffic to UDP. Secondly,

NATs have introduced asymmetric reachability as they can block all new

incoming data flows, including the HIP base exchange even though it

would be UDP encapsulated. As rendezvous servers have public addresses,

they could be used to penetrate NATs but unfortunately this fails espe-

cially when both of the communicating end-host are located in different

private address realms. For such scenarios, either Teredo can be com-

bined with HIP [228, p. 114] or the native extensions for HIP [124] can

be utilized. Besides NAT penetration procedures, the latter alternative

includes also relay extensions that guarantee relaying of the control, data

plane or both, in scenarios involving NATs resistant to peer-to-peer com-

munications [207, 87].

2.5.2 Heterogenous Addressing

The LSIs and HITs facilitate IPv6 interoperability at the application layer [245,

p. 3],[94, p. 15] as one end-point of a communication can use an LSI and

54

Challenges and Solutions in the TCP/IP Architecture

the other end-point a HIT. IPv6 interoperability is also supported at the

network layer because the mobility and multihoming mechanism support

cross-family handovers [113, 229]. Thus, it can stated that HIP supports

heterogeneous addressing especially for end-hosts.

Due to the introduction of IPv6, access control lists double in network

equipment such as in firewalls. This can be avoided in HIP-aware mid-

dleboxes, including firewalls and also rendezvous and relay servers, by

enforcing homogenized identifier types. For instance, a HIT can be used

to identify a host independently of whether the network-level connectiv-

ity is based on IPv4 or IPv6. Thus, the management of these middleboxes

may be simplified when resorting to single type of identifier such as HITs,

again accommodating heterogeneous addressing.

2.5.3 Secure Addressing

The base exchange authenticates two hosts to each other with their public

keys and implicitly tests for return routability. The public keys of the two

hosts are present also in the application layer in a compressed format as

HITs. This way, application layer security can be bound to lower layer

security to support implicit channel bindings [95, p. 12]. In other words,

the data flow of the application shares faith with underlying public key

based authentication: the data will either be delivered to the destination

host possessing the private key or the data delivery fails.

As HIP does not necessitate modifications to legacy applications, it im-

proves connection security in general for them as data plane is typically

protected by IPsec. Some applications or services implement access con-

trol based on IP addresses. For this class of applications, the user or ap-

plication can gain more confidence on the security level by populating the

access control list with HITs (or LSIs) instead of routable IP addresses.

However, other legacy applications may not improved in this implicit way

and the user may not be aware when HIP-based security takes place [179,

p. 13], thus the application may have to modified to become aware of

HIP31. This way, the application can involve the user in the decision to ap-

prove communications32 who can verify the other party out of band [179,

p. 16].

A native API for HIP [123] makes the channel bindings more explicit to

modified applications that can explicitly request the DNS resolver to re-

31Publication II implements an API for HIP
32Publication VI fulfills this albeit without modifications to legacy applications

55

Challenges and Solutions in the TCP/IP Architecture

turn HITs and for the application to manually configure HIT-to-IP map-

pings. The specification also defines an explicit way to use the HIP op-

portunistic mode that facilitates LoF-based security for HIP where the

initiator triggers the base exchange without prior knowledge of the iden-

tifier of the responder and the initiator learns the identifier during the

base exchange. As the use of the opportunistic mode implies weaker se-

curity level, the API requires explicit consent from the application to use

it.

The opportunistic mode does not meet the requirements for the per-

sistent identifiers as the base exchange is triggered solely based on the

topologically-dependent address of the responder. Thus, this fails to achieve

the goal of Internet transparency for persistent addressing and is prob-

lematic when the responder is mobile – a rendezvous server could be uti-

lized to remedy the situation but this would effectively render the oppor-

tunistic mode into a HIP-level anycast33. Nevertheless, the mode can be

useful, for instance, with publicly-reachable services with stable IP ad-

dresses when the extra interaction with DNS is to be avoided34.

When HIP records are stored in DNS, the DNS responses can be forged

by a man-in-the-middle attacker in the absence of DNSSEC. Thus, the

DNS can be the weakest link for HIP-based security even when oppor-

tunistic mode is not employed. As another weakness, advances in crypt-

analysis may also discover problems with certain algorithms used by HIP.

This means that HIs generated with the compromised algorithms need to

be regenerated and replaced with new HIs, meaning that even persistent

identifiers as employed by HIP have a limited life span35.

Deployment Considerations

In the context of site renumbering, a benefit of protocols based on core-

edge separation is that the number of nodes have to be upgraded is con-

strained as the protocol needs to be deployed to only edge routers. In

contrast, core-edge elimination approaches require more upgrades as the

number of end-hosts wildly surpasses the number of routers. Thus, the re-

searchers have proposed a number of proxy based deployment models for

HIP [192, 105, 247, 96, 151, 165]. However, the various proposals will not

be detailed here as the focus in this dissertation is on the standardized,

33HIP-based multicast has been studied by others [201, 250]
34Depending on the implementation model, e.g., installation of the DNS proxy
at the client side or configure the DNS records for servers
35This is the reason why HIPv2 will be more agile in negotiation the used algo-
rithms

56

Challenges and Solutions in the TCP/IP Architecture

elimination-based approach for HIP.

To operate HIP in the elimination approach, software has to deployed

both at the client and server-side hosts [94]. The most essential compo-

nent is the management software for the control plane36. Assuming the

deployment scenario involves protection of application traffic, the data

plane needs to be managed somehow – typically, HIP implementations

employ an optimized mode of IPsec, called the BEET mode [111], which

is supported natively only by the Linux networking stack for the time be-

ing37. To support HI resolution for legacy applications via DNS, either the

libraries supporting DNS requests can be modified to support HIP or a lo-

cal DNS proxy can be installed on the end-host as described earlier in the

example of section 2.5.1. Optionally, a relay server can be deployed both

at the client and server side unless, e.g., Teredo is used for NAT traversal.

Also, both relay and rendezvous extensions can be deployed in scenarios

involving double jump. It is also worth mentioning that routers, switches,

NATs, existing firewalls, VPNs and the most popular DNS server software

do not require any changes to accommodate HIP.

HIP itself has been researched extensively and explored in the context

of specific deployment scenarios, including in environments involving con-

strained devices [120, 161, 225], SIP [131, 45] and cellular [93] networks,

and also in cloud networking [125]. Its principles have been reused in a

number of other network research architectures [79, 76, 26]. For com-

mercial purposes, HIP has been adopted in few known cases. At the

Boeing airplane factory in Seattle, HIP secures connectivity for mobile

robots [171]. HIP has also been used to implement a layer-two VPN [96]

in a product called Tofino.

2.6 Summary and Comparison

The earlier sections in this chapter described individual protocols under

certain category despite the protocols might fit multiple categories. This

section gives an overview of the challenges and the solutions for consoli-

dated naming for easier comparison.

In general, the results are presented in tables where a tick mark labels

36Regarding code complexity, the size of a HIP implementation can be half of
the size of the corresponding MobileIP implementation with IKE-based secu-
rity [244, p. 162]
37Userspace IPsec implementations for Windows and separate support for
FreeBSD do exist, though

57

Challenges and Solutions in the TCP/IP Architecture

a protocol fulfills the property without any doubt, where as parentheses

are used when the property is fulfilled conditionally or when the property

is optional. The qualities of the protocols are obtained from the litera-

ture references but their arrangement as a taxonomy as described in this

dissertation is novel.

To keep this summary short, we omit the protocols that do not support

all the four properties for persistent identifiers: end-host mobility, multi-

homing, site renumbering and Internet transparency. Here we exemplify

some of the missing properties albeit the list missing properties is not

complete. Mobile IP, i3, LISP, Evolution and GSE are excluded because

they not improve transparency. This is also missing from M-FARA, SCTP,

MPTCP, TLS, dTLS, SSH and IKEv2 in addition to renumbering. DoA

does not specify mobility and multihoming support as it focuses on inter-

actions with middleboxes. Similarly, PCP, uPnP, ICE38 and Teredo are

not tailored for mobility, multihoming and site renumbering purposes.

In addition, SHIM6, NBS, 4+4 and Plutarch do not completely survive

site renumbering as they do not provide static identifiers for applications

that cache or hard code them into their configurations. Finally, NAT64,

DNSSEC and PLA are essentially tools for IPv6 interoperability or secu-

rity purposes39 and do not possess any of the four properties.

The exclusion leaves us with five protocols with persistent identifiers,

ILNPv6, LIN6, BTMM, NUTSS and HIP. Their other properties will be

compared in the remainder of this section.

Table 2.1 shows how the five protocols accommodate heterogeneous ad-

dressing. Legacy application support is divided into three capabilities.

The first two consist of rudimentary support for IPv4 or IPv6 addresses.

The third one refers to more advanced IPv4-IPv6 interoperability, that is,

whether the protocol supports an IPv4 application to communicate with

an IPv6 application and vice versa. Next, the protocol may be associ-

ated with an API for protocol-aware, or “native”, applications that offer

relief for the heterogeneous addressing simply by introducing a new ho-

mogeneous identifier. Finally, network-layer compatibility in IPv4 or IPv6

networks is displayed in the last two columns40.

Table 2.2 summarizes benign mechanisms to support security. The first

38At the time of this writing, mobility for ICE [239] has been proposed but not
yet officially adopted in the IETF
39Of course, it is possible to combine different protocols to combine their benefits
as is the case with Back to My Mac (BTMM)
40Compatibility of BTMM in IPv6-only networks was not documented [56].
Hence, we tried it in July 2012 and it failed to work for no apparent reason

58

Challenges and Solutions in the TCP/IP Architecture

Networking Legacy application support Native Network layer
protocol IPv4 IPv6 v4-v6 interop. new id IPv4 IPv6
ILNPv6 (X) X X (X) X
LIN6 X X
BTMM (X) X
NUTSS X X X X X
HIP X X X (X) X X

Table 2.1. Capabilities to facilitate heterogeneous addressing in the protocols

column names the protocol in question. The following column refers to a

protocol where the client authenticates itself to the server and correspond-

ingly the next column refers to the server authenticating to the server.

Here, authentication refers to authentication based on pre-shared secrets

(including passwords), public keys or certificates. The final column la-

beled with confidentiality refers to data-plane encryption and availability

to the support prevention unwanted traffic (at least not non-distributed).

Again, as a baseline, it should be noted that unmodified TCP/IP does have

any of the properties enlisted in the first row.

Protocol Client auth Server auth Confidentiality Availability
ILNPv6 (X) (X) (X)
LIN6 X
BTMM X X
NUTSS (X) (X) (X) (X)
HIP X X X X

Table 2.2. Secure-related properties of the five protocols

Table 2.3 summarizes the different namespace properties of the five pro-

tocols when they are used in the context of existing IP-based Internet.

After the protocol column, the next column describes whether the pro-

tocol is semantically based on a separate, disjoint namespace from the

IPv4 or IPv6 address spaces or it is overlapping from the view point of the

application layer. The following column describes whether the address

space is structured, i.e, based on aggregatable or hierarchical identifiers,

or if the address space is unstructured. The last column signifies whether

the identifiers are assigned centrally or in a distributed fashion; modi-

fied Extended Unique Identifier (EUI)-64 [99, p. 8] addresses are based

on centrally assigned MAC addresses and also URIs [33] require central

assignment, where as ORCHID [164] and ULA [100] type of identifiers

are self assigned and, hence, statistically unique. As a base line, unmodi-

fied IPv4/IPv6 addresses are typically structured and centrally assigned,

and they are also overlapping because a routable IP address couples the

roles of an identifier and locator. In general, it should be noted that un-

59

Challenges and Solutions in the TCP/IP Architecture

structured namespaces are subject to referral issues when the underlying

name resolution infrastructure supports only structured look ups.

Protocol Disjoint Structured Assignment
ILNPv6 X X EUI-64
LIN6 X X EUI-64
BTMM X X ULA
NUTSS X X URI
HIP X ORCHID

Table 2.3. Technical characteristics of the identifiers in the different protocols

Table 2.4 summarizes the design of the five protocols in general. After

the protocol column, the position of the logical layer of the protocol in the

TCP/IP stack is identified: in practice, layer 4.5 implies typically a sock-

ets interposition library (or an application overlay) located between the

application and network layers (to support legacy applications), layer 3.5

a new logical (and address translating) layer between transport and net-

work layers, and layer 3 solutions are typically involved with ARP or IPv6

duplicate address detection. The next column describes the deployment

model: symmetric middlebox deployment at both ends (core-edge elim-

ination) or symmetric end-host deployment (core-edge separation). The

following column specifies whether the protocol stores state information

on the identity-locator bindings in datagrams (tunneling) or as an extra

state at hosts (translation). After this, the next column denotes a proto-

col that requires changes only at either the client or server side, but not

both, thus typically implying an intermediate proxy or gateway. Finally,

the last column indicates if the protocol depends on new infrastructure,

such as protocol-specific proxies or name look up servers.

Protocol Layer Design type Data plane 1-side Infra
LIN6 3.5 Elimination Translation X
ILNPv6 3 Elimination Tunneling (X)
BTMM 3.5 Elimination Tunneling X
NUTSS 4.5 Elimination Translation X
HIP 3.5 Elimination Tunneling (X) (X)

Table 2.4. Summary of some of the technical design choices related to deployment

It is worth noting few dependencies in table 2.4. The last two columns

depend on each other, i.e., a proxy-based deployment requires infrastruc-

ture, albeit the reverse is not necessarily true. Also, core-edge separation

results in incomplete Internet transparency as the end-hosts cannot ad-

dress routers directly41.
41Thus, all protocols are based on elimination as non-transparent protocols were
excluded from this summary

60

Challenges and Solutions in the TCP/IP Architecture

The five protocols have their own trade offs when deployment is consid-

ered. For example, NUTSS is heavily reliant on infrastructure albeit it

can support off-the-path services by introducing this dependency. Sim-

ilarly, LIN6 introduces its own infrastructure for identity-locator map-

pings even though its generalized identifiers survive well site renumber-

ing events. In contrast, ILNPv6 reuses DNS to store the mappings and

also to deal with the simultaneous host movement, i.e. double jump, al-

beit this requires DNS servers to be upgraded to support secure dynamic

DNS updates. As a drawback, ILNPv642 splits an IPv6 address into iden-

tifier and locator formats in a way that exposes the possibly stale locator

portion to the application which is problematic with legacy applications

caching addresses during site renumbering. Hence, legacy applications

should be ported to use the FQDN-based API for ILNPv6. BTMM is a

very complete protocol albeit it is still vendor-specific technology. It in-

herits a weakness from its use of uPnP as it does not work with multiple

cascading NATs. Finally, HIP is similar to BTMM except that it is based

on a single, unified protocol rather than a collection. In contrast to BTMM,

it introduces secure identifiers (HITs) that can be used for authentication

in access-control lists of applications and middleboxes. The trade off here

is that its flat, self-assigned HITs introduce referral issues that are prob-

lematic for reverse resolution, i.e, when mapping a HIT back to FQDN or

routable IP address. While the existing IPv4 is also tainted by referral is-

sues due to private address realms and missing records to achieve reverse

resolution, HIP can remain architecturally clean if an organization takes

the responsibility of managing the entire IPv6 prefix assigned for HIP.

To conclude, this chapter has introduced a taxonomy for consolidated

namespace and described a number of solutions that fit one or more of

the categories. Based on the fulfilled challenges for persistent addressing,

capabilities to facilitate heterogeneous addressing in table 2.2 and the

improved security characteristics in table 2.2, HIP appears as a decent

match for a consolidated namespace. While the contributions of the indi-

vidual publications to improve HIP to better meet the challenges have

been prematurely mentioned in this section, the following chapter ex-

plains the contributions in more detail.

42ILNPv4 employs IPv4 options and ICMPv4 that are blocked by many firewalls

61

Challenges and Solutions in the TCP/IP Architecture

62

3. A Consolidated Namespace for
Network Applications, Developers,
Administrators and Users

In this chapter, we summarize contributions of the individual publica-

tions related to consolidated name spaces at a high level. First, we make

a reality check to understand the real state of network applications and

verify some of the challenges in section 3.1. Next, we analyze how well

HIP meets the challenges of a consolidated namespace in section 3.2 – es-

pecially from the view point of a developer – based on the contributions of

the publications. Then, we view the impact of HIP to end-users in section

3.3 and continue with a deployment perspective that concerns especially

network administrators in section 3.4. Finally, we summarize the contri-

butions in section 3.5 and suggest future work items in section 3.6.

3.1 Revisiting the Challenges for Network Applications

Publication I characterizes the network applications and frameworks in

Ubuntu Linux. The goal of this investigation was to understand how

open-source network applications utilize the low-level Sockets and POSIX

APIs directly or indirectly, and how applications employ security. As the

number of C-based software packages using the low-level APIs was rel-

ative high (710), they were analyzed only statistically, and four example

application frameworks were inspected manually. We investigated chal-

lenges related to IPv6, the use of UDP, TLS/SSL-based security and the

use of a number of extensions for the Sockets API. In this section, we

highlight some key issues related persistent, heterogeneous and secure

addressing in the low-level networking APIs based our findings. It is

worth noting that the revisiting all aspects for consolidated addressing is

impossible within a single publication and, thus, we admit to have merely

touched the tip of an iceberg.

As IPv4 address space has been nearly exhausted, IPv6 has become

63

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

more important. This means that network applications have to be modi-

fied to support IPv6 addresses. In the investigation, the number of appli-

cations supporting both IPv4 and IPv6 was 26.9%. To support IPv6, both

client and server-based applications have to support the two different ad-

dress families for both name look up from DNS and network I/O. Such

use of heterogeneous addressing increases complexity in all applications.

IPv6-mapped IPv4 addresses do not really solve the issue of heterogeneity

because they do not work with all sockets API functions and are actually

considered harmful when they leak on the wire [152, pp. 1-4].

To avoid complexity with the Sockets API, certain applications employ

network application frameworks to hide the low-level networking details.

Therefore, we also investigated the use of the low-level networking in four

frameworks: java.net for java-based applications, Twisted for Python-

based software and, Boost and ACE for C++ applications. We discovered

an issue with non-persistent use of addresses in all of the frameworks,

a problem tainting many of the non-framework applications as well. To

be more exact, the problem occurs only in the context of UDP with hosts

equipped with multiple addresses. The UDP multihoming problem oc-

curs when a server-based application receives a UDP-based message from

a client and responds back without specifying the source address explic-

itly. Ignoring the source address may result in the underlying network-

ing stack choosing a wrong source address at the server and the client

dropping the message as it appears to originate from an entirely different

server. As many of the commodity devices of today ranging from hand-

held devices to rack servers are multihoming capable, the impact of the

problem should not be ignored. It is worth mentioning that similar prob-

lems are also being addressed at the Multiple Interfaces (MIF) working

group at the IETF at a broader scope [36, 233].

While the UDP multihoming issue can be directly solved by fixing the

issue in the application, this problem could also be worked around with

multihoming extensions that introduce only a single identifier to the ap-

plication1. Some of these extensions support also TCP and allow address

changes throughout the lifetime of transport-layer sessions – a vanilla

TCP connection cannot survive an address change during communica-

tions because it is tightly bound to the IP addresses. UDP is more tolerant

against such failures by its disconnected nature but would still require ad-

ditional application-specific logic to facilitate decouple the data flows from

1This applies also to weak end system model mentioned in the previous section

64

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

the addresses in a secure way.

To support persistent connectivity for multihoming, e.g., SCTP, MPTCP,

SHIM6, HIP, MobileIP or MobIKE can be used. However, SCTP requires

some changes in the application and has been adopted only by few appli-

cations in Ubuntu Linux. With the exception of MobIKE2, the remaining

three protocols were not yet adopted in vanilla Ubuntu and all four would

have been difficult to trace due to their transparency at the application

layer.

The most popular TLS/SSL implementation was OpenSSL that was used

in 10.9% of the applications. Here, we highlight two security-related as-

pects with its use. Firstly, the initialization procedures were neglected

in many of the applications. For example, the Pseudo-Random Number

Generator (PRNG) was seeded properly only in 58.4% of the C-based ap-

plications utilizing OpenSSL and in two out of four frameworks. Secondly,

setting of the security-related options was popular (53.3%). For instance,

20.1% of the applications explicitly allowed downgrade from TLSv1 to an

older version of the protocol, SSLv3. While supporting such backward

compatibility during transition periods is beneficial for the end-users, this

opens a question why the applications have to deal with such problems in

general. In the ideal case, such complexity should be automatically and

transparently handled inside the library implementing the security. This

lesson applies also to other security protocols with explicit APIs, including

HIP [122].

3.2 HIP as a Consolidated Namespace for Network Applications

TLS/SSL had been embraced by the developers, perhaps partly due to its

visibility to the applications, and it was only natural to try to repeat its

success with HIP. In Publication II, we designed and implemented na-

tive APIs for HIP-aware applications. The API implementation required

changes both in the system resolver and in the Linux kernel. We in-

tegrated the APIs with an example proof-of-concept application and ex-

tended the host-specific security model of HIP to allow user or application-

specific identities; similar trends appeared later in the Unmanaged Inter-

net Architecture (UIA) [77, 76] architecture.

The native API for HIP meets the criteria for consolidated addressing

2Strongswan-ikev2 package had 3582 installations (with rank of 16804) in
Ubuntu popularity contest in January 2012

65

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

quite well. For persistence, the API uses the location-independent identi-

ties of HIP. From the view point of security, HIs are secure by their nature

and the API extends the HI concept to application or user-specific identi-

ties. While the legacy APIs for HIP accommodate heterogeneous address-

ing with LSIs and HITs, the native API relies on homogenized identifiers

called end-point identifiers. Such an identifier hides the different forms of

HIs – LSIs, HITs and also application-specified HIs. The end-point iden-

tifier resembles a file or socket descriptor, and thus serves as an indirect,

local reference to the corresponding HI. In the API, applications manage

mappings from the descriptors to HIs either directly or indirectly using

the DNS resolver.

While the descriptors certainly introduced some amount of complexity,

they were a useful utility in organizing variable-sized HIs into Sockets

API structures with a fixed maximum length. Unfortunately, the some-

what “unorthodox” concept of the end-point identifier did not make it to

the final RFC [123] due to lack of consensus in the IETF. Instead of the

syntactically homogeneous identifiers, the RFC version specifies different

tokens for early binding with HITs and for late binding. The former refers

to HIs discovered from, e.g., from DNS where as the latter refers to special

“wildcards” or, to be more precise, client-side macros to handle outgoing

data flows based on the opportunistic mode and server-side macros to ac-

cept incoming data flows from unspecified clients.

The native API for HIP provides a cleaner way for applications to control

the use of LoF than the transparent way employed in Publication V and,

in fact, later research verifies that a separate monitoring API should be

available when LoF is implemented independently of the application [179,

p. 353].

While applications ported to use the native HIP API can directly interact

with the user to inform about the security being employed, this leaves a

vast number of legacy applications without such support. In Publication

VI, we implemented a graphical firewall to manage and approve HIP-

based data flows directly from the end-user. While prototype was far from

complete, the experiment was a success in the sense that HIP could be

used without any changes to the application layer while improving visi-

bility of HIP to the user.

We conducted usability tests with the graphical interface for HIP to un-

derstand how users perceive use of HIP with varying levels of visibility

in the context of web. In general, the users perceived the interface rea-

66

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

sonably well considering the maturity of the prototype. The experiment

included usability tests with HITs that were visible to the application and

also based on the transparent LoF implementation. In retrospect, the im-

plemented graphical interface improved LoF security for HIP because a

later security analysis from Pham et al. [179, p. 352] asserts that user in-

teraction in LoF security is critical in HIP. Further, the authors state that

the credentials (i.e., the binding from the FQDN to HI in this case) of the

server should be stored permanently and its deletion should be left only

for expert users. Our user interface met the former criteria but relaxed

the latter as the deletion did not require special privileges.

To protect application-layer services with HIs in address-family agnos-

tic and secure way, Publication IV experiments with a middlebox-based

firewall that can filter HIP control and data plane. Basically, the firewall

tracks persistent HIs instead of ephemeral IP addresses of mobile end-

hosts, thus supporting access control for services using HIs. Compared to

traditional firewalls, a limitation of the solution is that is does not inspect

the traffic at the granularity of port numbers at the server side unless the

end-hosts employ an unencrypted data plane. As described in the publica-

tion, this could be mitigated with service-specific identifiers when a single

server host is offering multiple services.

Similarly as in the native API, the HIP-based firewall can be entirely

managed homogeneously identifiers that hide details of the underlying

network topology and the IP version. Also, the HITs could be used to

define more fine-grained policies at the network layer than with VPNs to

protect against attacks originating inside from the company; as the HIP

firewall policies are based on lists of individual end-hosts (rather than

network prefixes), it may be easier to exclude individual hosts out.

Publication III further continued the exploration of mitigation of un-

wanted traffic but this time focusing on service side. The use case here is

mitigation of unwanted traffic in the form of email spam which continues

to thrive especially considering that sending spam is cheap as spammers

maximize their profits by maximizing spam rates [115, p. 4]. As our pro-

posed solution, we modified an open-source email spam filter to throttle

the spam rate with the computational puzzles of HIP. HIP also provides

authenticated identifiers that can be easily used for access control but we

realized soon that malign hosts could circumvent the access control with

short-lived identifiers. As a resolution, we proposed extra application-

layer logic to favor benign hosts with long-lived identifiers and penalize

67

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

possibly malign hosts with short-lived identifiers3. Thus, extending the

life time of the identifiers was aligned with the goal of supporting persis-

tent identifiers in HIP. Also, our work with computational puzzles comple-

ments other research on HIP puzzles [219, 30] and may be considered a

more concrete realization of more theoretical work by Goodman et al. [83].

3.3 Impact of HIP to End-users

Publication VI analyzed how end-users perceive security indicators con-

sisting of visual and textual cues. The indicators were implemented for

the HIP-based management and prompting user interface, HIP aware

web browser and a test website. The indicators (or their absence) in these

software modules visualized the communications based on plain IP, nor-

mal HIP, opportunistic HIP (as presented in Publication V), SSL over IP,

and SSL over normal HIP.

The usability tests revealed that the management interface for HIP

connectivity was rather unpolished. Unsurprisingly, we observed that

users did not even want to see long and lengthy HITs but rather human-

readable names. For a relatively new protocol such as HIP, users pre-

ferred familiar security indicators for web browsers, including lock sym-

bols and colored address bars.

It appeared irrelevant for the users to see the difference how the se-

curity was implemented, whether it was normal HIP, TLS/SSL or both.

They also did not perceive any noticeable difference between normal and

opportunistic HIP even though the latter effectively disabled the security

indicators in the browser because the opportunistic mode implementation

shimmed the presence of identifiers from the application. However, this

phenomena could be explained by the presence of the user interface that

prompted for new HIP based connections.

We witnessed the recurring fact that security can easily go unnoticed

by the users. This applied to the absence and presence of security indica-

tors; users did not report the absence of indicators when connecting to an

unsafe site, nor did they report the presence of the indicators when they

were not prompted as the HIT of the server was already in the cached

by the user interface. Nevertheless, the users ranked security levels cor-

rectly; connections intended to be secure were ranked clearly more secure

3Undoubtedly, many of the hosts of a botnet can belong to benevolent users.
However, perhaps throttling of such hosts can eventually reveal that they are
compromised so that they can be acted upon

68

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

than insecure ones.

Publication II introduced user-specific identifiers. The idea was that

users could transfer the identity from a device to another and the HIP

software module would then import the identity. Thus, a HI became a

portable user identity.

It should be noted that the approach had its limitations; on-the-fly ses-

sion migration was not supported as it would have required transfer-

ring of the transport-layer state as well 4. As another limitation, the

user-specific identifiers could be imported from any media, including USB

memories or disks but importing of user identity to a host involves at

least two security risks as mentioned in the publication. On a multi-user

machine, the same identity could be used by other users, depending on

the security granularity of HIP implementation. On a compromised host,

the private key part of the identity could be replicated by the intruder.

While the multi-user issue could be solved with fine-grained access con-

trol mechanisms, the other issue is more difficult to mitigate especially

when the intruder has administrative privileges. The escalation of the

situation could be contained by employing a smart card that would se-

curely store the private key and sign data upon requests. At least, this

would prevent compromising of the private key.

As outlined in Publication IV, the middle-box firewall could be deployed

in WLAN access points to support passwordless authentication for end-

users. However, the problem of distributing the keys from the users to the

administrators is still present independently of the deployment scenario.

As a solution, we suggested the EasyVPN [32] approach that bootstraps

IPsec-based VPNs using TLS and web services.

3.4 Deployment Aspects

Any new protocol, whether it be research or industry originated, is sub-

ject to the scrutiny of realistic deployment scenario. In Publication I, we

discuss the deployment of HIP and other related protocols from the view

point of their APIs. While the findings lack longitudinal analysis, the

adoption of certain API trends in the latest Ubuntu Long-Term Support

(Ubuntu) (LTS) were apparent.

The deployment of IPv6 at the application space was relatively small

4It should be noted that session delegation with HIP has been further analyzed
by others [98]

69

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

as only a quarter of the applications supported it. Partially, this could

be explained by the fact that the analysis included also less popular ap-

plications with perhaps inactive code maintenance. However, it can be

also speculated that the lack of IPv6 support may originate from appli-

cation developers that endorse homogeneous APIs by clinging into IPv4.

As explained earlier in section 3.2, management of IPv6 introduces extra

complexity to manage the network connections of applications.

OpenSSL was used by 10.9% percent of the software even through it re-

quires pervasive changes in the networking logic of the application. Other

protocols requiring more modest changes were not so popular; SCTP and

Datagram Congestion Control Protocol (DCCP) were used only by few ap-

plications. While the kernel and Sockets API changes for these two pro-

tocols are present in modern Linux systems, it appears that library-based

solutions, such as OpenSSL, are more welcomed by application develop-

ers. Thus, it could be argued that also the native APIs for HIP will not be

adopted rapidly as it is based on the Sockets API rather than a library.

Roughly two out of five applications were setting socket options. Based

their popularity, it could argued that API extensions based only on them

might have better chances for adoption due to their familiarity with devel-

opers. Examples of protocols employing such extensions are MPTCP [195,

pp. 8-12], shared multihoming extensions for SHIM6 and HIP [122]. In

contrast, native APIs for HIP [123] may experience slower adoption be-

cause the extensions are tightly bound to the new and yet unpopular DNS

resolver.

According to the coarse-grained estimates, it appeared that roughly two

thirds of the applications were selecting IPv4 source addresses explicitly.

Assuming IPv6 will be more widely deployed, one could assume a similar

ratio for the adoption of IPv6 source address selection. As described ear-

lier in section 3.2, proper source address selection is important also in the

context of HIP-based firewalls; ignoring the selection may result in the

networking stack to choose a source HIT that will be filtered by the fire-

wall at the middle. If not the firewall, the server-side application may be

the source of a failed connectivity; the UDP multihoming bug as described

in section 3.1 applies equally to legacy applications when the underlying

host provides multiple HITs to the applications.

RFC5887 [49, p. 34] lists a number of potential sources of IPv4 address

literals and refers to another study [204] that lists potential address de-

pendencies in 34 out of 257 RFC protocol specifications. Based on empir-

70

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

ical study of an IPv6-only testbed, Arkko et al [13, p. 14] described that

some network software use IPv4 address literals instead relying on DNS-

based names. In contrast, we did not observe such addresses as described

in Publication II. However, this may have occurred because our investiga-

tion was limited to a static code analysis (instead of run-time one or traffic

analysis) and we also excluded configuration files.

As a specific use case study of referrals, we experimented empirically

with FTP in Publication II. This particular case did not appear problem-

atic in practice because FTP typically passes addresses as “callbacks” be-

tween a client and a server, meaning that addresses are mirrored between

a pair of hosts. This is not a problem unless the FTP server redirects to

another server based on the IP address. In such a case, a HIP-aware ap-

plication and application-layer protocol would be required to pass also the

IP address to the other host.

While RFC 5218 [215] does not consider adoption issues specifically in

the context of APIs, the native API for HIP in Publication II were designed

to maximize familiarity for developers; the API included a simple resolver

option to enforce the returning of HITs from DNS resolution, in addition

to defining extra APIs for more pervasive use. It is also worth mention-

ing that the extensions for user-specific identifiers in the API were also

designed to be compatible with standardized HIP to make their adoption

more seamless. Yet, the native API may have a rocky adoption road in

front of it as even its minimal use depends on the unpopular resolver.

In general, it would be easier to deploy HIP along with a new system

such as P2P-SIP [109, p. 77],[45] that perhaps even already has been

adapted to it [47]. Similarly to this, Publication III proposed a use case

for HIP where its deployment was limited to server side. More specifi-

cally, HIP was deployed only on Simple Mail Transfer Protocol (SMTP)

servers because the number of client-side hosts clearly outnumber the

SMTP servers. Instead of end-to-end use, HIP was used here in a point-

to-point fashion due to the nature of the SMTP service. In order for early

adopters to obtain the benefits, the publication advised to introduce more

delay for HIP-incapable servers as an adoption incentive. This could facil-

itate incremental deployment as the deployment of HIP would not require

a flag day.

Publication III also clarified that the DNS-related changes are back-

wards compatible. HIP has new records in the DNS that do not interfere

with HIP-incapable hosts and the format can be used without any changes

71

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

with the most popular DNS server software, bind [94, p. 19]. Also, the look

up of DNS records for HIP can be transparently handled at SMTP servers

using an local DNS proxy.

Similarly as in the SMTP use case, the HIP-based firewall Publication

IV was aimed for a specific group of people in order for early adopters to

obtain the benefits. The HIP-based firewall can be used internally, e.g.,

within single a company in a similar fashion as a VPN. This benefits of

the firewall can be useful for the entire company but especially for the

network administrators. When HIP is being utilized, the HIP firewall

filters based on persistent identifiers, thus facilitating network renum-

bering when a company changes its ISP or merges with another 5. The

hard-coded HIP-based identifiers in various configuration files for appli-

cations and services, can persist topology changes and, thus, cause less

down time. Management of the firewall can be more simple for the ad-

ministrators as separate rules for IPv4 and IPv6 are not needed, thus

perhaps reducing the number of configuration errors.

Publication V experimented with the most conservative use of HIP that

did not expose LSIs and HITs to the application layer at all. Instead,

the applications used regular routable IP addresses. Consequently, no

support from the DNS infrastructure was needed in order to deploy HIP.

As SSH was successful with its LoF model, we experimented if HIP would

be flexible enough to support this as well with its opportunistic mode.

The LoF for HIP was implemented using a shim library between the ap-

plication and the sockets. The library used the opportunistic key exchange

of HIP. The implemented library could be enabled at system, user or appli-

cation granularity depending on the local policies. The library translated

IP addresses of the application to HITs that were further processed by the

IPsec module in the networking stack. As applications were not employ-

ing HITs, application-level referrals were not an issue when employing

publicly-reachable addresses. Despite of the additional translation step

from IP addresses to HITs, the library added negligible overhead to the

throughput. As a configurable feature of the library, it implemented also a

fallback mode 6 that bypassed HIP-based processing after a timeout when

connecting to a HIP-incapable host.

As a major design compromise, the LoF effectively trades off ease of de-

ployment at the cost of employing non-persistent identifiers. With the im-

5To support external access from other sites without HIP support, e.g., a web
proxy is needed [125]
6The fall back as a generic mechanism was later also endorsed by others [9, p. 2]

72

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

plementation model used, persistence is lost for the initial contact as the

opportunistic mode operates without prior knowledge of the HI of the re-

sponder. At the application layer, a legacy application witnesses only the

initial locators (and not the identifiers) obtained during the connection

set up while the actual locators as utilized by the stack can change. As

another design compromise, the LoF model also fails to provide persistent

identifiers in NATted environments, thus compromising Internet trans-

parency. Also, routable IPv4 and IPv6 addresses are insecure by their

nature, despite they function better as referrals (but only in scenarios not

involving NATs).

From the view point of security, the DNS resolution is the weakest link

in the use of HIP until DNSSEC is widely deployed [56, p. 11]. Thus,

during the transition to DNSSEC, the LoF model as presented in Pub-

lication V is a viable option because even the non-opportunistic HIP is

susceptible to man-in-middle attacks without DNSSEC. Further, while

introducing DNS records is fairly trivial and does not cause any conflicts

with HIP-incapable end-hosts, the LoF model avoids HIP-specific records

altogether. However, the presence or absence of DNS records describes

clearly when a host supports HIP or not. LoF does include this capabil-

ity detection and the comes with the cost of timeouts when used “in the

wild”. As briefly mentioned in Publication V, we suggested a solution for

the timeouts to reduce the fallback latency to transition from HIP to non-

HIP based connectivity. As IP options are typically filtered by firewalls,

our solution for this was to exploit TCP options to detect HIP-capable

hosts [35, pp. 24-26].

3.5 Summary and Lessons Learned

This section summarizes the contributions of the publications to achieve

a consolidated namespace with HIP. The resulting architecture is viewed

from the view point of end-users, network application developers and net-

work administrators as illustrated in figure 3.1.

Publication I revisited the challenges and solutions for consolidated nam-

ing: non-persistent, heterogeneous, insecure addressing. The statisti-

cal analysis was constrained to certain aspects of application-layer solu-

tions as network-layer solutions are difficult to trace due to their trans-

parency 7.

7Chapter 2 revisited the challenges and solutions through literature references

73

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

End−point descriptors or HITs

UsersNetwork application developers

Host Identity Protocol

Email

Frameworks

A Consolidated Namespace

Opportunistic mode as a transition mechanism

Persistent Secure

Browser Web service Midbox FW

Web UIs & end−host FW

Administrators

File transfer

ACE, Boost, Java, Twisted

Native API for HIP

Homogeneous

Figure 3.1. A visualization of the HIP-based solution for the challenges for a consolidated
namespace

As an example of non-persistent addressing, we discovered a program-

ming bug in the way developers implement UDP-based communications.

The problem typically occurs on multihoming hosts and affects many of

the UDP-based applications in Ubuntu Linux, including four network ap-

plication frameworks where the problem was verified manually 8.

Regarding to heterogeneous addressing, we observed that a fourth of the

applications in Ubuntu support both IPv4 and IPv6. This dual use of the

addresses complicates the networking logic of applications and can also

have an impact on the user experience as the related latency issues have

to be solved redundantly by each developer in the absence of a de-facto

solution.

As IP addresses offer little security per se, the developers typically use

SSL/TLS. In Ubuntu, roughly every tenth application utilized it through

the OpenSSL library. However, almost three out of five applications using

the library were not initializing it in a secure way. We also observed a

large number of the applications configuring various security details for

the library, leaving us puzzled if some of the details should ever be exposed

to the applications.

We proposed HIP as a unified solution for consolidated addressing and

improved it to better fulfill this proposition. To support persistent iden-

tifiers for services, Publication III studied access control for HIP-based

identifiers to mitigate against email spam with a mindset to motivate

8It should be noted that HIP was not integrated into the frameworks

74

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

end-hosts for long-lived identifiers. Publication IV presented a middlebox-

based firewall to control access to HIP-based services for mobile HIP clients.

To support heterogeneous identifiers, the firewall could again be used to

homogenize IPv4 and IPv6 access control lists under a single list based on

uniform HIs. The homogenization was also employed in the native API for

HIP in Publication II that unified addressing for end-host applications us-

ing end-point identifiers. For secure addressing, the native API and also

the graphical end-host firewall in Publication VI improved LoF-based se-

curity for HIP as later confirmed by others. It should be mentioned that

the security of the identifiers played an important part in experimenta-

tion with the end host and middlebox-based firewall, and email spam.

In Publication III, we proposed a deployment model for HIP where it

was used internally between SMTP servers. In the same publication, we

also corrected a deployment-related misunderstanding according to which

HIP records would require change to the DNS server implementations.

In Publication V, we showed how HIP can actually be used in the oppor-

tunistic mode without any additional DNS records. From the view point

of security, the opportunistic mode is based on the weaker LoF-based se-

curity. Nevertheless, LoF can be considered secure enough until DNSSEC

fortifies the weakest link in HIP, that is, the look up of the HIP records

from the DNS. However, we identified two short comings of the oppor-

tunistic mode for HIP. Firstly, the time out mechanism to fall back to

non-HIP communications when encountering HIP-incapable hosts can be

optimized. Secondly, the opportunistic mode regresses to non-persistent

addressing in order to facilitate easier deployment.

To recap the contributions from the view point of the target groups, we

tested usability of HIP in Publication VI where the end-users used a web

browser to connect to a website. The presence of HIP was visualized using

various cues, including the lock symbol and also using graphical prompt

that operated at the system level. Despite the prototype was rather un-

polished, the users understood when security was employed. The exper-

iment also confirmed that HIP-based security should be visualized using

traditional security indicators.

For developers, the native API for HIP, as presented in Publication II, al-

lows to gain more control of HIP and supports application or user-specific

identifiers. For network administrators, the middlebox-based firewall of

Publication IV can simplify management issues as the persistent iden-

tifiers of HIP support mobile clients and survive network renumbering

75

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

while unifying separate access control rules for IPv4 and IPv6 into single

ones.

3.6 Future Directions

Publication I uncovered a number of issues in software for Linux. In gen-

eral, it would be useful to automatize them using a static analysis tool

such as Coverity [34]. Few ideas for improvement on the individual issues

could be also mentioned. For instance, it remains uncertain how the mul-

tihoming issue with UDP-based applications relates to another discovered

property of the applications. Namely, two thirds of the applications were

capable handling at least some level of source address selection based on

this coarse-grained estimate.

Publication II prototyped with user-specific identifiers. One reason why

they were excluded in the finalized standardized version [123] was related

to security. Namely, handling of user-specific identifiers requires strict ac-

cess control measures on multi-user devices. Also, storing the user iden-

tity on a smart card or a TPM chip was proposed but not implemented. In

practice, this would require delegation of privileges to the device from the

card or chip and a revocation mechanism. For speed up the revocation, a

cryptographically accelerated smart card could be used to signing a data

plane based on asymmetric encryption [46] but only while the card is con-

nected to the device. As an alternative, a TPM chip might be requested

to sign a HIP-specific certificate [92] for a certain predefined time period.

This way, the potential abuse of a portable long-term identifier would be

limited spatially or temporally when using the identity in a compromised

device, for instance, in a public Internet kiosk.

It should be also noted that parallel to our work, IPsec-policy APIs for

applications [243] were developed and could be further integrated with

the native API.

Publication III proposed to tackle spam by disconnecting TCP connec-

tions with misbehaving SMTP hosts and by introducing large computa-

tional puzzle values when they reconnect. In contrast, greylisting does

not require the deployment of HIP and, for instance, can mitigate spam by

disconnecting connections from previously unknown IP addresses. How-

ever, the assumption in greylisting is that spammers do not reconnect

which may not be valid in the future as spammers get smarter. Thus, an

additional mechanism as proposed by the publication may become neces-

76

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

sary in the future.

While Publication III acted as a starting point for HIP deployment con-

siderations in the context of SMTP, we have later also experimented with

a HIP deployment internally in a cloud network [126]. Then, we have

considered HIP deployment in general from from a techno-economical per-

spective [212]. A potential deployment direction for HIP from the techno-

economical analysis was to implement HIP in a userspace library above

transport layer [84] to avoid the kernel deployment hurdles required for

the native HIP API.

Publication V used the opportunistic base exchange in HIP to achieve

LoF for legacy applications. However, we were dissatisfied with the shim

placement just above the sockets in contrast to others [87, p. 10] and

explored with another implementation model where the shim layer cap-

tures datagrams at the network layer instead of socket calls [73, pp. 34-

36]. While the two proof-of-concept implementations work with legacy

applications at an end-host, we believe that the opportunistic mode is

more suitable to in other scenarios. The shim layer capturing datagrams

at the network layer could be used at middleboxes such as HIP-based

proxies [192]. At end-hosts, this be used by HIP-aware applications at

a client-side host to connect to a server via a rendezvous server to fa-

cilitate a HIP-layer anycast because the rendezvous server could choose

the ultimate recipient with the opportunistic mode. At the server side, a

server could use it to register itself one rendezvous server from a pool of

rendezvous servers. Naturally, DNS round-robin schemes for rotating HI

records would serve as an alternative to such a HIP-layer anycast.

In general, the number of distributed experiments with HIP has been

small. For instance, the middlebox-based firewall and its experimenta-

tion in Publication IV could be extended. For production purposes, the

prototype of the middle-box based firewall could be extended to support

de-centralized access control to support fault tolerance and asymmetric

routes. For routing, also the impact of off-the-path routing based on the

optional HIP relays could also be measured. As HITs are not aggregat-

able, bloom filters could be used to reduce the overhead for large access

control lists [42]. In addition, a performance comparison with another

similar scheme such as MobIKE would be useful. MobIKE which can also

be used for access control of mobile clients but requires a gateway that

introduces triangular routing. In contrast, our approach does not besides

77

A Consolidated Namespace for Network Applications, Developers, Administrators and Users

the transparent firewall located at the edge of the site 9.

Publication VI prototyped a graphical user interface for HIP. The design

was rather immature as the results of the usability tests indicated. Nev-

ertheless, we believe this end-user firewall for HIP could be integrated

seamlessly with existing end-user firewall products, such as offered by F-

Secure, Symantec and other anti-virus companies. However, this remains

to be verified.

9In general, firewalls are usually deployed at the edge of a site independently of
whether the site supports a VPN or not

78

4. Conclusions

While users and services are identified using DNS-based names, such

names were an extension to the TCP/IP architecture where IP addresses

are omnipresent. IP addresses are used either directly or indirectly to

develop network applications, and they are employed at the transport

and network layers. Unfortunately, this originally simplifying choice is

a source of inflexibility especially considering that computers of today are

able to run sophisticated and complex software. However, it is economi-

cally challenging to change this addressing model as the IP addresses are

metaphorically the glue that holds the Internet together. In this disserta-

tion, we attempt to improve three sources of inflexibility in the TCP/IP ar-

chitecture in a backward compatible way: non-persistent, heterogeneous

and insecure addressing. A solution that meets the different aspects of

these three challenges is referred as a consolidated namespace in the con-

text of this work.

Non-persistent addressing stems from the nature of IP addresses that

are dependent on the local topology. This causes problems for mobile and

multihoming devices when they change their network attachment point.

The change of the local IP address unnecessarily terminates TCP streams

as they are still bound to the previous address but it is not only a prob-

lem for on-going flows of data but also for new data flow. For instance,

overlapping private address realms as introduced by NAT technology are

tainted by non-persistent addressing because devices cannot be uniquely

identified based on their IP address alone and, thus, a mobile device may

simply contact a wrong host when transition between two networks. As

another example scenario, the issue manifests itself during a company

merger or acquisition, or when the site changes its provider. Then, the

entire network prefix of the site may change, leaving a number of stale IP

addresses forgotten in a various configuration files, only to be discovered

79

Conclusions

by network administrators during site renumbering.

Heterogeneous addressing as introduced by IPv6 addresses involves ad-

ditional complexity for application developers and network administra-

tors as they have to deal with two heterogeneous namespaces instead of

a single. Insecure addressing is the basis for the TCP/IP model; IP ad-

dresses are insecure by their nature and additional measures are needed

to guarantee security for network applications.

A number of backward compatible solutions that meet the architectural

challenges set of a consolidated namespace do exist but fulfill the require-

ments only partially. From the surveyed solutions, five prominent solu-

tions meet the described properties for persistent addressing and are com-

pared in more detail for their other technical aspects. NUTSS architec-

ture distinguishes from the others by facilitating off-path services but re-

quires additional infrastructure to complete this task. While LIN6 solves

renumbering in a relatively simple way by dividing an IPv6 address into

identifier and locator portions, also it requires extra infrastructure. In

contrast, ILNPv6 does not fare well with renumbering but mostly avoids

deployment costs incurring from new infrastructure. BTMM is quite a

complete approach but is unsuitable with multiple cascading NATs and

is vendor-specific, proprietary technology. The last protocol, HIP is cho-

sen for the empirical experimentation as it fairs well in the comparison.

Similarly as BTMM, it is quite a complete solution but based on open

standards and open-source implementations. As another difference, HIP

is based on a unstructured identifiers which has some ramifications with

the structured DNS but the impact of this so called referral issue still

remains moot. As a trade off, the merits are crystal clear as HIP offers a

topologically-independent namespace based on cryptographically secured,

self-certifying identifiers that are compatible with legacy applications.

In the collection of articles, we have empirically experimented with HIP

and improved it to better meet the criteria for a consolidated namespace

as set by this dissertation. The results are disseminated from the view

point of three different target groups of people: end-users, network appli-

cation developers and network administrators.

First, we focused on understanding the development aspects by trying

to understand the present state of networking applications. To be more

precise, we analyzed how network applications and frameworks use the

low-level networking APIs in Linux. Related to heterogeneous address-

ing, we observed that a fourth of the IPv4-based applications supported

80

Conclusions

also IPv6. Related the persistent addressing, all of the four manually ex-

amined frameworks had a bug related to UDP that occurs during initial

connectivity with multihoming end-hosts. We also observed that every

tenth application employed SSL/TLS-based security using the OpenSSL

library. Of these, almost three out of five were not initializing the library

correctly from the view point of security. Hence, the challenges for consol-

idated addressing do exist and our work attempts to fill these gaps.

To repeat the adoption success of SSL/TLS-based security with HIP, we

designed and implemented a native API for HIP that gives more control

for developers of HIP-aware applications. The API also extends HIP to

support application or user-specific identifiers instead of merely host spe-

cific ones. To better meet the requirements for a consolidated namespace,

the API also unifies the heterogeneous two HIP identifier types used in

legacy IPv4 and IPv6 applications into a single one. As later discovered

by others, the separate API, such as the one we developed, is required to

improve security when so called leap-of-faith security is employed [179, p.

353].

We exploited a feature of HIP, computational puzzles, to mitigate against

unwanted traffic in the case of email spam. A modified spam filter throt-

tled senders of spam by disconnecting sessions and offered more time con-

suming puzzles for them. The access control was based on the persistent

identifiers of HIP that could be circumvented with temporary identifiers.

To avoid penalties with puzzles, the proposed strategy was to reward be-

nign hosts with long-lived identifiers with smaller puzzles. We proposed

to adopt the mechanism only between email relays to avoid deployment

hurdles at the client side.

As another use case, we developed a HIP-aware firewall that exploited

the secure identifiers of HIP to control access to HIP-based services. The

novelty of the approach is that the firewall supports mobile client devices

by tracking and authenticating them based on their persistent identifiers

instead of their ephemeral IP addresses. Changes in the addresses of the

servers are also supported as the firewall can also support site renum-

bering as identifiers forgotten in various configuration files continue to

work. As another relief for network administrators, a single identifier-

based rule for access control replaces the two separate rules traditionally

required for IPv4 and IPv6, thus supporting the goal for the heteroge-

neous addressing.

As an intermediate step to make the transition towards HIP easier,

81

Conclusions

we explored the use of HIP as transparent mechanism that controver-

sially does not meet goals for consolidated naming at the application layer.

Our implementation of the leap-of-faith security, or opportunistic mode

in other terms, was implemented as shim library between the applica-

tion and the sockets layer to transparently translate IP addresses of the

legacy application to HIP-based identifiers for the transport layer. As a

trade off, the opportunistic mode is subject to man-in-the-middle attacks

because the client learns the identity of the server during communica-

tions instead of obtaining it from pre-shared information or look up from

a directory. Until DNSSEC is deployed more widely, we believe that oper-

ating HIP in this fashion offers reasonable security because DNS can be

considered the weakest link for storing the identifiers for HIP. In addition,

implemented approach avoids the referral issue at the application layer.

We conducted usability tests with a group test of persons to understand

how end-users perceive different ways of using HIP in a web-based en-

vironment. The use of HIP was illustrated using traditional security in-

dicators, such the lock symbol in the browser. The transparent use of

HIP was illustrated using a new graphical system level prompt that es-

sentially acted as an end-host firewall to allow the user to accept or deny

HIP-based communications. The users clearly noticed when security was

employed despite the difference between the LoF and normal HIP-based

security was not obvious. While we observed room for polishing the pro-

totype, others have identified that confirmation of the opportunistic mode

from the user is critical from the view point of security [179, p. 352].

The research contributions of this dissertation have also real-world im-

pact. The general investigation to the low-level networking APIs and

network application frameworks revealed a number of bugs that can be

fixed to improve the software quality in various Linux distributions. Some

of the problems especially related to java-based framework may also af-

fect the Linux-based Android distribution that has been dominating the

mobile handset business lately. Besides the general contributions, the

HIP-specific contributions have impacted the IETF standardization. The

experimentation with the UDP-based multihoming, opportunistic mode,

end-host and middlebox firewalls is referenced by two experimental stan-

dards [95, 94]. We improved the specification for the native API according

to the feedback from the IETF community and it was published as an

experimental standard [123]. The work further inspired joint activities

with the SHIM6 working group and produced another API-related stan-

82

Conclusions

dard [122].

For future directions, HIP-based anycast combined with the security

of native API may be an interesting research direction. To understand

the deployment dimension better, we applied HIP in a cloud deployment

scenario [126] and conducted a techno-economic survey [212] and, based

on the findings, continued exploration of HIP as a stand-alone library at

the application layer [84] during the time of this writing. Due the ef-

forts of various researchers, HIP has become an extensively researched

topic and its principles have also been adapted to other research archi-

tectures [79, 76, 26]. Besides the Tofino security product and production-

environment deployment at Boeing, the time has become more mature for

HIP to be embraced by the industry as it moving from the experimental

to the standards track in the IETF.

83

Conclusions

84

Bibliography

[1] J. Abley, B. Black, and V. Gill. Goals for IPv6 Site-Multihoming Architec-
tures. RFC 3582 (Informational), Aug. 2003.

[2] J. Abley, K. Lindqvist, E. Davies, B. Black, and V. Gill. IPv4 Multihoming
Practices and Limitations. RFC 4116 (Informational), July 2005.

[3] B. Aboba, D. Simon, and P. Eronen. Extensible Authentication Protocol
(EAP) Key Management Framework. RFC 5247 (Proposed Standard), Aug.
2008.

[4] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact
name-independent routing with minimum stretch. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorithms and archi-
tectures, SPAA ’04, pages 20–24, New York, NY, USA, 2004. ACM.

[5] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design
and implementation of an intentional naming system. In Proceedings of
the seventeenth ACM symposium on Operating systems principles, SOSP
’99, pages 186–201, New York, NY, USA, 1999. ACM.

[6] J. Ahrenholz. Host Identity Protocol Distributed Hash Table Interface.
RFC 6537 (Experimental), Feb. 2012.

[7] S. Akhshabi and C. Dovrolis. The evolution of layered protocol stacks leads
to an hourglass-shaped architecture. SIGCOMM Comput. Commun. Rev.,
41(4):206–217, Aug. 2011.

[8] H. T. Alvestrand. Overview: Real Time Protocols for Brower-based Appli-
cations, Mar. 2012. Internet draft, work in progress.

[9] A. Anand, F. Dogar, D. Han, B. Li, H. Lim, M. Machado, W. Wu, A. Akella,
D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste. Xia: an archi-
tecture for an evolvable and trustworthy internet. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages 2:1–2:6,
New York, NY, USA, 2011. ACM.

[10] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and
S. Shenker. Accountable internet protocol (aip). SIGCOMM Comput. Com-
mun. Rev., 38(4):339–350, Aug. 2008.

[11] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. DNS Secu-
rity Introduction and Requirements. RFC 4033 (Proposed Standard), Mar.
2005. Updated by RFC 6014.

85

Bibliography

[12] J. Arkko, J. Kempf, B. Zill, and P. Nikander. SEcure Neighbor Discovery
(SEND). RFC 3971 (Proposed Standard), Mar. 2005. Updated by RFCs
6494, 6495.

[13] J. Arkko and A. Keranen. Experiences from an IPv6-Only Network. RFC
6586 (Informational), Apr. 2012.

[14] J. Arkko, V. Lehtovirta, and P. Eronen. Improved Extensible Authentica-
tion Protocol Method for 3rd Generation Authentication and Key Agree-
ment (EAP-AKA’). RFC 5448 (Informational), May 2009.

[15] J. Arkko and P. Nikander. Weak Authentication: How to Authenticate Un-
known Principals without Trusted Parties, pages 5–19. Springer, 2002.

[16] R. J. Atkinson, S. Bhatti, and S. Hailes. Ilnp: mobility, multi-homing, lo-
calised addressing and security through naming. Telecommunication Sys-
tems, 42(3-4):273–291, 2009.

[17] F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP. RFC 4787 (Best Current Practice), Jan.
2007.

[18] T. Aura. Cryptographically Generated Addresses (CGA). RFC 3972 (Pro-
posed Standard), Mar. 2005. Updated by RFCs 4581, 4982.

[19] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant authentication with
client puzzles. In Revised Papers from the 8th International Workshop
on Security Protocols, pages 170–177, London, UK, UK, 2001. Springer-
Verlag.

[20] S. authors. Part 11: Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, Amendment 6: Medium Access Con-
trol (MAC) Security Enhancements, July 2004.

[21] S. authors. Port-based Network Access Control, IEEE Std 802.1X-2010,
Feb. 2010.

[22] J. Baek, J. Newmarch, R. Safavi-naini, and W. Susilo. A survey of identity-
based cryptography. In Proc. of Australian Unix Users Group Annual Con-
ference, pages 95–102, 2004.

[23] M. Bagnulo, P. Matthews, and I. van Beijnum. Stateful NAT64: Network
Address and Protocol Translation from IPv6 Clients to IPv4 Servers. RFC
6146 (Proposed Standard), Apr. 2011.

[24] M. Bagnulo, A. Sullivan, P. Matthews, and I. van Beijnum. DNS64: DNS
Extensions for Network Address Translation from IPv6 Clients to IPv4
Servers. RFC 6147 (Proposed Standard), Apr. 2011.

[25] F. Baker, E. Lear, and R. Droms. Procedures for Renumbering an IPv6
Network without a Flag Day. RFC 4192 (Informational), Sept. 2005.

[26] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Sto-
ica, and M. Walfish. A layered naming architecture for the internet. In
Proceedings of the 2004 conference on Applications, technologies, architec-
tures, and protocols for computer communications, SIGCOMM ’04, pages
343–352, New York, NY, USA, 2004. ACM.

86

Bibliography

[27] H. Ballani, P. Francis, T. Cao, and J. Wang. Making routers last longer
with viaggre. In Proceedings of the 6th USENIX symposium on Networked
systems design and implementation, NSDI’09, pages 453–466, Berkeley,
CA, USA, 2009. USENIX Association.

[28] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y. Hu. Wireless
sensor networks: A survey on the state of the art and the 802.15.4 and
zigbee standards. Computer Communications, 30(7):1655–1695, 2007.

[29] T. Bates and Y. Rekhter. Scalable Support for Multi-homed Multi-provider
Connectivity. RFC 2260 (Informational), Jan. 1998.

[30] J. Beal and T. Shepard. Deamplification of DoS Attacks via Puzzles, Oct.
2004.

[31] S. Bellovin, J. Schiller, and C. Kaufman. Security Mechanisms for the
Internet. RFC 3631 (Informational), Dec. 2003.

[32] M. C. Benvenuto and A. D. Keromytis. Easyvpn: Ipsec remote access made
easy. In Proceedings of the 17th USENIX conference on System adminis-
tration, pages 87–94, Berkeley, CA, USA, 2003. USENIX Association.

[33] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. RFC 2396 (Draft Standard), Aug. 1998. Obsoleted
by RFC 3986, updated by RFC 2732.

[34] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler. A few billion lines of code
later: using static analysis to find bugs in the real world. Commun. ACM,
53(2):66–75, Feb. 2010.

[35] B. Bishaj. Backwards Compatibility Experimentation with Host Identity
Protocol and Legacy Software and Networks, June 2008.

[36] M. Blanchet and P. Seite. Multiple Interfaces and Provisioning Domains
Problem Statement. RFC 6418 (Informational), Nov. 2011.

[37] M. Borella, J. Lo, D. Grabelsky, and G. Montenegro. Realm Specific IP:
Framework. RFC 3102 (Experimental), Oct. 2001.

[38] C. Boulton, J. Rosenberg, G. Camarillo, and F. Audet. NAT Traversal Prac-
tices for Client-Server SIP. RFC 6314 (Informational), July 2011.

[39] R. Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122 (Standard), Oct. 1989. Updated by RFCs 1349, 4379, 5884,
6093, 6298, 6633.

[40] S. Bradner, A. Mankin, and J. I. Schiller. A framework for Purpose-Built
keys (PBK).

[41] M. Buddhikot, A. Hari, K. Singh, and S. Miller. Mobilenat: a new tech-
nique for mobility across heterogeneous address spaces. Mob. Netw. Appl.,
10(3):289–302, June 2005.

[42] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica.
Rofl: routing on flat labels. In Proceedings of the 2006 conference on Appli-
cations, technologies, architectures, and protocols for computer communi-
cations, SIGCOMM ’06, pages 363–374, New York, NY, USA, 2006. ACM.

87

Bibliography

[43] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter
Base Protocol. RFC 3588 (Proposed Standard), Sept. 2003. Updated by
RFCs 5729, 5719, 6408.

[44] T. Callahan, M. Allman, and V. Paxson. A longitudinal view of HTTP traf-
fic. In Proceedings of the 11th international conference on Passive and
active measurement, PAM’10, pages 222–231, Berlin, Heidelberg, 2010.
Springer-Verlag.

[45] G. Camarillo, I. Mas, and P. Nikander. A framework to combine the session
initiation protocol and the host identity protocol. In WCNC, pages 3051–
3056. IEEE, 2008.

[46] G. Camarillo and J. Melen. Host Identity Protocol (HIP) Immediate
Carriage and Conveyance of Upper-Layer Protocol Signaling (HICCUPS).
RFC 6078 (Experimental), Jan. 2011.

[47] G. Camarillo, P. Nikander, J. Hautakorpi, A. Keranen, and A. Johnston.
HIP BONE: Host Identity Protocol (HIP) Based Overlay Networking En-
vironment (BONE). RFC 6079 (Experimental), Jan. 2011.

[48] B. Carpenter. Internet Transparency. RFC 2775 (Informational), Feb.
2000.

[49] B. Carpenter, R. Atkinson, and H. Flinck. Renumbering Still Needs Work.
RFC 5887 (Informational), May 2010.

[50] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC 3234
(Informational), Feb. 2002.

[51] G. Caruana and M. Li. A survey of emerging approaches to spam filtering.
ACM Comput. Surv., 44(2):9:1–9:27, Mar. 2008.

[52] I. Castineyra, N. Chiappa, and M. Steenstrup. The Nimrod Routing Archi-
tecture. RFC 1992 (Informational), Aug. 1996.

[53] H. K. Catharina Candolin, Janne Lundberg. Packet level authentication
in military networks. In Proceedings of the 6th Australian Information
Warfare & IT Security Conference, Geelong, Australia, Nov. 2005.

[54] G. Chen, K. Minami, and D. Kotz. Naming and Discovery in Mobile Sys-
tems. In P. Bellavista and A. Corradi, editors, The Handbook of Mobile
Middleware, chapter 16, pages 387–407. 2006.

[55] D. R. Cheriton and M. Gritter. TRIAD: a Scalable Deployable NAT-based
Internet Architecture, Jan. 2000.

[56] S. Cheshire, Z. Zhu, R. Wakikawa, and L. Zhang. Understanding Apple’s
Back to My Mac (BTMM) Service. RFC 6281 (Informational), June 2011.

[57] D. Clark, R. Braden, A. Falk, and V. Pingali. Fara: reorganizing the ad-
dressing architecture. In Proceedings of the ACM SIGCOMM workshop on
Future directions in network architecture, FDNA ’03, pages 313–321, New
York, NY, USA, 2003. ACM.

[58] D. Crocker. Telnet output formfeed disposition option. RFC 655 (Historic),
Oct. 1974.

88

Bibliography

[59] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and A. Warfield. Plutarch:
an argument for network pluralism. SIGCOMM Comput. Commun. Rev.,
33(4):258–266, Aug. 2003.

[60] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert. Network Mobil-
ity (NEMO) Basic Support Protocol. RFC 3963 (Proposed Standard), Jan.
2005.

[61] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176.

[62] A. L. Dul. Global IP Network Mobility using Border Gateway Protocol
(BGP), Mar. 2006.

[63] L. Eggert and F. Gont. TCP User Timeout Option. RFC 5482 (Proposed
Standard), Mar. 2009.

[64] T. Ernst. Network Mobility Support Goals and Requirements. RFC 4886
(Informational), July 2007.

[65] T. Ernst and H.-Y. Lach. Network Mobility Support Terminology. RFC
4885 (Informational), July 2007.

[66] P. Eronen. IKEv2 Mobility and Multihoming Protocol (MOBIKE). RFC
4555 (Proposed Standard), June 2006.

[67] P. Eronen, H. Tschofenig, and Y. Sheffer. An Extension for EAP-Only Au-
thentication in IKEv2. RFC 5998 (Proposed Standard), Sept. 2010.

[68] K. Fall. A delay-tolerant network architecture for challenged internets. In
Proceedings of the 2003 conference on Applications, technologies, architec-
tures, and protocols for computer communications, SIGCOMM ’03, pages
27–34, New York, NY, USA, 2003. ACM.

[69] P. Faltstrom and G. Huston. A Survey of Internet Identities, Dec. 2004. An
expired Internet draft.

[70] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID Separation
Protocol (LISP), Feb. 2012. Work in progress.

[71] D. Farinacci, D. Lewis, D. Meyer, and C. White. LISP Mobile Node, 2011
Oct. Work in progress.

[72] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785, 6266, 6585.

[73] T. Finez. Efficient Leap of Faith Security with Host Identity Protocol, Dec.
2008.

[74] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyengar. Architectural
Guidelines for Multipath TCP Development. RFC 6182 (Informational),
Mar. 2011.

[75] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across
network address translators. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC ’05, pages 13–13, Berkeley,
CA, USA, 2005. USENIX Association.

89

Bibliography

[76] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek, and R. Mor-
ris. Persistent personal names for globally connected mobile devices. In
Proceedings of the 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’06), Seattle, Washington, November 2006.

[77] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek, and R. Mor-
ris. User-relative names for globally connected personal devices. In
Proceedings of the 5th International Workshop on Peer-to-Peer Systems
(IPTPS06), Santa Barbara, CA, February 2006.

[78] U. Forum. "Internet Gateway Device (IGD) V 2.0", Apr. 2012.

[79] P. Francis and R. Gummadi. Ipnl: A nat-extended internet architecture. In
Proceedings of the 2001 conference on Applications, technologies, architec-
tures, and protocols for computer communications, SIGCOMM ’01, pages
69–80, New York, NY, USA, 2001. ACM.

[80] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Pro-
tocol Version 3.0. RFC 6101 (Historic), Aug. 2011.

[81] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis. LISP Alternative Topology
(LISP+ALT), 2011 Dec. Work in progress.

[82] M. Goff. Network Distributed Computing: Fitscapes and Fallacies. Pren-
tice Hall Professional Technical Reference, 2003.

[83] J. T. Goodman and R. Rounthwaite. Stopping outgoing spam. In Pro-
ceedings of the 5th ACM conference on Electronic commerce, EC ’04, pages
30–39, New York, NY, USA, 2004. ACM.

[84] X. Gu. Host Identity Protocol Version 2.5, June 2012.

[85] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Be-
havioral Requirements for TCP. RFC 5382 (Best Current Practice), Oct.
2008.

[86] S. Guha and P. Francis. Characterization and measurement of tcp traver-
sal through nats and firewalls. In Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, IMC ’05, pages 18–18, Berkeley, CA,
USA, 2005. USENIX Association.

[87] S. Guha and P. Francis. An end-middle-end approach to connection estab-
lishment. In Proceedings of the 2007 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, SIGCOMM
’07, pages 193–204, New York, NY, USA, 2007. ACM.

[88] A. Gurtov and T. Polishchuk. Secure multipath transport for legacy inter-
net applications. In Broadband Communications, Networks, and Systems,
2009. BROADNETS 2009. Sixth International Conference on, pages 1 –8,
sept. 2009.

[89] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol,
Version 2. RFC 2608 (Proposed Standard), June 1999. Updated by RFC
3224.

[90] E. Hammer-Lahav. The OAuth 1.0 Protocol. RFC 5849 (Informational),
Apr. 2010.

90

Bibliography

[91] T. Heer. Direct End-to-Middle Authentication in Cooperative Networks,
Dec. 2011.

[92] T. Heer and S. Varjonen. Host Identity Protocol Certificates. RFC 6253
(Experimental), May 2011.

[93] S. Heikkinen. Applicability of Host Identities in Securing Network Attach-
ment and Ensuring Service Accountability, Nov. 2011.

[94] T. Henderson and A. Gurtov. The Host Identity Protocol (HIP) Experiment
Report. RFC 6538 (Informational), Mar. 2012.

[95] T. Henderson, P. Nikander, and M. Komu. Using the Host Identity Protocol
with Legacy Applications. RFC 5338 (Experimental), Sept. 2008.

[96] T. Henderson, S. C. Venema, and D. Mattes. HIP-based Virtual Private
LAN Service (HIPLS), Mar. 2012.

[97] T. R. Henderson. Host mobility for IP networks: A comparison. IEEE
Network, 17(6):18–26, Nov. 2003.

[98] S. Herborn, A. Huber, R. Boreli, and A. Seneviratne. Secure host identity
delegation for mobility. In COMSWARE. IEEE, 2007.

[99] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC
4291 (Draft Standard), Feb. 2006. Updated by RFCs 5952, 6052.

[100] R. Hinden and B. Haberman. Unique Local IPv6 Unicast Addresses. RFC
4193 (Proposed Standard), Oct. 2005.

[101] C. Huitema. Teredo: Tunneling IPv6 over UDP through Network Address
Translations (NATs). RFC 4380 (Proposed Standard), Feb. 2006. Updated
by RFCs 5991, 6081.

[102] C. Huitema and B. Carpenter. Deprecating Site Local Addresses. RFC
3879 (Proposed Standard), Sept. 2004.

[103] G. Huston. Architectural Approaches to Multi-homing for IPv6. RFC 4177
(Informational), Sept. 2005.

[104] G. Huston. A Rough Guide to Address Exhaustion, Mar. 2011.

[105] G. Iapichino and C. Bonnet. Host identity protocol and proxy mobile
ipv6: a secure global and localized mobility management scheme for mul-
tihomed mobile nodes. In Proceedings of the 28th IEEE conference on
Global telecommunications, GLOBECOM’09, pages 578–583, Piscataway,
NJ, USA, 2009. IEEE Press.

[106] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking named content. In Proceedings of the 5th inter-
national conference on Emerging networking experiments and technologies,
CoNEXT ’09, pages 1–12, New York, NY, USA, 2009. ACM.

[107] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. SIG-
COMM Comput. Commun. Rev., 34(4):145–158, Aug. 2004.

[108] D. Jen, M. Meisel, H. Yan, D. Massey, L. Wang, B. Zhang, and L. Zhang.
Towards a new internet routing architecture: Arguments for separating
edges from transit core. HotNets-VII, October 2008.

91

Bibliography

[109] C. Jennings, B. B. Lowekamp, E. Rescorla, S. A. Baset, and H. Schulzrinne.
REsource LOcation And Discovery (RELOAD) Base Protocol. Internet En-
gineering Task Force, Oct. 2011. Internet draft, work in progress.

[110] C. Jennings, B. B. Lowekamp, E. Rescorla, S. A. Baset, and H. Schulzrinne.
REsource LOcation And Discovery (RELOAD) Base Protocol, Mar. 2012.
Internet draft, work in progress.

[111] P. Jokela, R. Moskowitz, and J. Melen. Using the Encapsulating Security
Payload (ESP) Transport Format with the Host Identity Protocol (HIP),
July 2012. Internet draft, work in progress.

[112] P. Jokela, R. Moskowitz, and P. Nikander. Using the Encapsulating Se-
curity Payload (ESP) Transport Format with the Host Identity Protocol
(HIP). RFC 5202 (Experimental), Apr. 2008.

[113] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall. Host Identity Proto-
col: Achieving IPv4 - IPv6 handovers without tunneling. In in Proceedings
of Evolute workshop 2003: "Beyond 3G Evolution of Systems and Services",
Nov. 2003.

[114] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikan-
der. Lipsin: line speed publish/subscribe inter-networking. In Proceed-
ings of the ACM SIGCOMM 2009 conference on Data communication, SIG-
COMM ’09, pages 195–206, New York, NY, USA, 2009. ACM.

[115] C. Kanich, C. Kreibich, K. Levchenko, B. Enright, G. M. Voelker, V. Paxson,
and S. Savage. Spamalytics: an empirical analysis of spam marketing
conversion. In Proceedings of the 15th ACM conference on Computer and
communications security, CCS ’08, pages 3–14, New York, NY, USA, 2008.
ACM.

[116] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Pro-
posed Standard), Dec. 2005. Obsoleted by RFC 5996, updated by RFC
5282.

[117] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301 (Proposed Standard), Dec. 2005. Updated by RFC 6040.

[118] A. Keränen, G. Camarillo, and J. Mäenpää. Host Identity Protocol-Based
Overlay Networking Environment (HIP BONE) Instance Specification for
REsource LOcation And Discovery (RELOAD). Internet Engineering Task
Force, Apr. 2011. Internet draft, work in progress.

[119] V. Khare, D. Jen, X. Zhao, Y. Liu, D. Massey, L. Wang, B. Zhang, and
L. Zhang. Evolution towards global routing scalability. IEEE Journal on
Selected Areas in Communications, 28(8):1363–1375, 2010.

[120] A. Khurri. Evaluating IP Security on Lightweight Hardware, Jan. 2011.
ISBN 978-952-60-4004-2.

[121] S. L. Kinney. Trusted Platform Module Basics: Using TPM in Embedded
Systems (Embedded Technology). Newnes, 2006.

[122] M. Komu, M. Bagnulo, K. Slavov, and S. Sugimoto. Sockets Applica-
tion Program Interface (API) for Multihoming Shim. RFC 6316 (Infor-
mational), July 2011.

92

Bibliography

[123] M. Komu and T. Henderson. Basic Socket Interface Extensions for the
Host Identity Protocol (HIP). RFC 6317 (Experimental), July 2011.

[124] M. Komu, T. Henderson, H. Tschofenig, J. Melen, and A. Keranen. Basic
Host Identity Protocol (HIP) Extensions for Traversal of Network Address
Translators. RFC 5770 (Experimental), Apr. 2010.

[125] M. Komu, M. Sethi, R. Mallavarapu, H. Oirola, R. Khan, and S. Tarkoma.
Secure Networking for Virtual Machines in the Cloud. In International
Workshop on Power and QoS Aware Computing (PQoSCom2012). IEEE,
sep 2012. Accepted for publication.

[126] M. Komu, M. Sethi, R. Mallavarapu, H. Oirola, R. Khan, and S. Tarkoma.
Secure networking for virtual machines in the cloud. In The 2012 Interna-
tional Workshop on Power and QoS Aware Computing (PQoSCom’12), held
in conjunction with IEEE Cluster’12. IEEE Computer Society, Sept. 2012.
Accepted for publication.

[127] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica. A data-oriented (and beyond) network archi-
tecture. SIGCOMM Comput. Commun. Rev., 37(4):181–192, Aug. 2007.

[128] T. Koponen, P. Eronen, and M. Särelä. Resilient connections for ssh and tls.
In Proceedings of the annual conference on USENIX ’06 Annual Technical
Conference, ATEC ’06, pages 30–30, Berkeley, CA, USA, 2006. USENIX
Association.

[129] T. Koponen, J. Lindqvist, N. Karlsson, E. Vehmersalo, M. Komu, M. Kousa,
D. Korzun, and A. Gurtov. Overview and Comparison Criteria for the Host
Identity Protocol and Related Technologies, Nov. 2005.

[130] J. Korhonen. IP Mobility in Wireless Operator Networks, Nov. 2008. 978-
952-10-5014-5.

[131] J. Koskela and S. Tarkoma. Simple peer-to-peer sip privacy. In Secu-
rity and Privacy in Mobile Information and Communication Systems, vol-
ume 17 of Lecture Notes of the Institute for Computer Sciences, Social In-
formatics and Telecommunications Engineering, pages 226–237. Springer
Berlin Heidelberg, 2009.

[132] D. V. Krioukov and K. C. Claffy. Toward compact interdomain routing.
CoRR, abs/cs/0508021, 2005.

[133] M. Kucherawy and D. Crocker. Email Greylisting: An Applicability State-
ment for SMTP. RFC 6647 (Proposed Standard), June 2012.

[134] M. Kulkarni, A. Patel, and K. Leung. Mobile IPv4 Dynamic Home Agent
(HA) Assignment. RFC 4433 (Proposed Standard), Mar. 2006.

[135] M. Kunishi, M. Ishiyama, K. Uehara, H. Esaki, and F. Teraoka. LIN6: A
New Approach to Mobility Support in IPv6. In in Proc. of the Third Inter-
national Symposium on Wireless Personal Multimedia Communications,
nov 2000.

[136] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals. RFC 4919 (Informational), Aug. 2007.

93

Bibliography

[137] J. Laganier and L. Eggert. Host Identity Protocol (HIP) Rendezvous Ex-
tension. RFC 5204 (Experimental), Apr. 2008.

[138] J. Laganier, T. Koponen, and L. Eggert. Host Identity Protocol (HIP) Reg-
istration Extension. RFC 5203 (Experimental), Apr. 2008.

[139] D. Lagutin. Securing the internet with digital signatures, Dec. 2010.

[140] D. Lagutin and H. Kari. Controlling incoming connections using cer-
tificates and distributed hash tables. In Y. Koucheryavy, J. Harju, and
A. Sayenko, editors, NEW2AN, volume 4712 of Lecture Notes in Computer
Science, pages 455–467. Springer, 2007.

[141] A. Langley. Transport Layer Security (TLS) Snap Start, June 2010. Ex-
pired Internet draft.

[142] A. Langley, N. Modadugu, and B. Moeller. Transport Layer Security (TLS)
False Start, June 2010. Expired Internet draft.

[143] E. Lear. NERD: A Not-so-novel EID to RLOC Database, Apr. 2012. Work
in progress, expires in October 2012.

[144] E. Lear and R. Droms. What’s in a name: Thoughts from the NSRG.
Internet-draft, IETF Secretariat, Fremont, CA, USA, Sept. 2003.

[145] T. Li. Design Goals for Scalable Internet Routing. RFC 6227 (Informa-
tional), May 2011.

[146] T. Li. Recommendation for a Routing Architecture. RFC 6115 (Informa-
tional), Feb. 2011.

[147] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around
NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT
(STUN). RFC 5766 (Proposed Standard), Apr. 2010.

[148] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On dominant Charac-
teristics of Residential Broadband Internet Traffic. In Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference, IMC
’09, pages 90–102, New York, NY, USA, 2009. ACM.

[149] J. Manner and M. Kojo. Mobility Related Terminology. RFC 3753 (Infor-
mational), June 2004.

[150] A. Medina, M. Allman, and S. Floyd. Measuring interactions between
transport protocols and middleboxes. In Proceedings of the 4th ACM SIG-
COMM conference on Internet measurement, IMC ’04, pages 336–341, New
York, NY, USA, 2004. ACM.

[151] J. Melen, J. Ylitalo, and P. Salmela. Host Identity Protocol-based Mobile
Proxy, Aug. 2009. An expired Internet draft.

[152] C. Metz and J. ichiro itojun Hagino. IPv4-Mapped Addresses on the Wire
Considered Harmful, Oct. 2003. Work in progress, expired in Oct, 2003.

[153] D. Meyer, L. Zhang, and K. Fall. Report from the IAB Workshop on Routing
and Addressing. RFC 4984 (Informational), Sept. 2007.

[154] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. SIGCOMM Comput. Commun. Rev., 34(2):39–53, Apr. 2004.

94

Bibliography

[155] A. Mishra, M. Shin, and W. Arbaugh. An empirical analysis of the ieee
802.11 mac layer handoff process. SIGCOMM Comput. Commun. Rev.,
33(2):93–102, Apr. 2003.

[156] G. Montenegro. Reverse Tunneling for Mobile IP, revised. RFC 3024 (Pro-
posed Standard), Jan. 2001.

[157] R. Moskowitz and P. Nikander. Host Identity Protocol (HIP) Architecture.
RFC 4423 (Informational), May 2006.

[158] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity
Protocol. RFC 5201 (Experimental), Apr. 2008. Updated by RFC 6253.

[159] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network
Authentication Service (V5). RFC 4120 (Proposed Standard), July 2005.
Updated by RFCs 4537, 5021, 5896, 6111, 6112, 6113, 6649.

[160] C. Ng, P. Thubert, M. Watari, and F. Zhao. Network Mobility Route Opti-
mization Problem Statement. RFC 4888 (Informational), July 2007.

[161] P. Nie, J. Vähä-Herttua, T. Aura, and A. Gurtov. Performance analysis
of hip diet exchange for wsn security establishment. In Proceedings of the
7th ACM symposium on QoS and security for wireless and mobile networks,
Q2SWinet ’11, pages 51–56, New York, NY, USA, 2011. ACM.

[162] P. Nikander, T. Henderson, C. Vogt, and J. Arkko. End-Host Mobility and
Multihoming with the Host Identity Protocol. RFC 5206 (Experimental),
Apr. 2008.

[163] P. Nikander and J. Laganier. Host Identity Protocol (HIP) Domain Name
System (DNS) Extensions. RFC 5205 (Experimental), Apr. 2008.

[164] P. Nikander, J. Laganier, and F. Dupont. An IPv6 Prefix for Overlay
Routable Cryptographic Hash Identifiers (ORCHID). RFC 4843 (Exper-
imental), Apr. 2007.

[165] P. Nikander and K. Slavov. Proxying Approach to SHIM6 and HIP (PASH),
Feb. 2007. An expired Internet draft.

[166] P. Nikander, J. Wall, and J. Ylitalo. Integrating security, mobility,
and multi-homing in a HIP way,. In Proceedings of Network and Dis-
tributed Systems Security Symposium, pages 87–99, San Diego, California,
Feb. 2003. Internet Society. http://www.tcm.hut.fi/~pnr/publications/
NDSS03-Nikander-et-al.pdf.

[167] P. Nikander, J. Ylitalo, and J. Wall. Integrating security, mobility, and
multi-homing in a hip way. In Network and Distributed Systems Security
Symposium (NDSS’03), pages 87–99, Feb. 2003.

[168] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol
for IPv6. RFC 5533 (Proposed Standard), June 2009.

[169] M. O’Dell. GSE - An Alternate Addressing Architecture for IPv6, Feb.
1997.

[170] L. Ong and J. Yoakum. An Introduction to the Stream Control Transmis-
sion Protocol (SCTP). RFC 3286 (Informational), May 2002.

95

http://www.tcm.hut.fi/~pnr/publications/NDSS03-Nikander-et-al.pdf
http://www.tcm.hut.fi/~pnr/publications/NDSS03-Nikander-et-al.pdf

Bibliography

[171] R. H. Paine. Beyond HIP: The End to Hacking As We Know It. BookSurge
Publishing, 2009.

[172] J. Pan, S. Paul, and R. Jain. A survey of the research on future internet
architectures. Communications Magazine, IEEE, 49(7):26 –36, july 2011.

[173] S. Paul, J. Pan, and R. Jain. A survey of naming systems: Classification
and analysis of the current schemes using a new naming reference model,
2009.

[174] S. Paul, J. Pan, and R. Jain. Architectures for the future networks and the
next generation internet: A survey. Comput. Commun., 34(1):2–42, Jan.
2011.

[175] X. Pérez-Costa, M. Torrent-Moreno, and H. Hartenstein. A performance
comparison of mobile ipv6, hierarchical mobile ipv6, fast handovers for
mobile ipv6 and their combination. SIGMOBILE Mob. Comput. Commun.
Rev., 7(4):5–19, Oct. 2003.

[176] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944 (Proposed
Standard), Nov. 2010.

[177] C. Perkins, D. Johnson, and J. Arkko. Mobility Support in IPv6. RFC 6275
(Proposed Standard), July 2011.

[178] H. Petander. A Network Mobility Management Architecture for a Hetero-
geneous Network Environment, Dec. 2007. ISBN 978-951-22-9098-7.

[179] V. Pham and T. Aura. Security Analysis of Leap-of-Faith Protocols. In
Seventh ICST International Conference on Security and Privacy for Com-
munication Networks, Sept. 2011.

[180] S. Pierrel, P. Jokela, J. Melen, and K. Slavov. A Policy System for Simul-
taneous Multiaccess with Host Identity Protocol. Munich, Germany, May
2007.

[181] V. K. Pingali, A. Falk, T. Faber, and R. Braden. Farads prototype design
document, june 2003.

[182] O. Ponomarev and A. Gurtov. Embedding Host Identity Tags Data in DNS,
2009. An expired Internet draft.

[183] O. Ponomarev, A. Khurri, and A. Gurtov. Elliptic curve cryptography (ecc)
for host identity protocol (hip). In Proceedings of the 2010 Ninth Interna-
tional Conference on Networks, ICN ’10, pages 215–219, Washington, DC,
USA, 2010. IEEE Computer Society.

[184] L. Popa, A. Ghodsi, and I. Stoica. Http as the narrow waist of the future
internet. In Proceedings of the Ninth ACM SIGCOMM Workshop on Hot
Topics in Networks, Hotnets ’10, pages 6:1–6:6, New York, NY, USA, 2010.
ACM.

[185] J. Postel and J. Reynolds. File Transfer Protocol. RFC 959 (Standard), Oct.
1985. Updated by RFCs 2228, 2640, 2773, 3659, 5797.

[186] R. Raghavendra, E. M. Belding, K. Papagiannaki, and K. C. Almeroth.
Understanding handoffs in large ieee 802.11 wireless networks. In Pro-
ceedings of the 7th ACM SIGCOMM conference on Internet measurement,
IMC ’07, pages 333–338, New York, NY, USA, 2007. ACM.

96

Bibliography

[187] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC
4347 (Proposed Standard), Apr. 2006. Obsoleted by RFC 6347, updated by
RFC 5746.

[188] J. Rexford and C. Dovrolis. Future internet architecture: clean-slate ver-
sus evolutionary research. Commun. ACM, 53(9):36–40, Sept. 2010.

[189] C. Rigney, S. Willens, A. Rubens, and W. Simpson. Remote Authentication
Dial In User Service (RADIUS). RFC 2865 (Draft Standard), June 2000.
Updated by RFCs 2868, 3575, 5080.

[190] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for
Network Address Translator (NAT) Traversal for Offer/Answer Protocols.
RFC 5245 (Proposed Standard), Apr. 2010. Updated by RFC 6336.

[191] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Util-
ities for NAT (STUN). RFC 5389 (Proposed Standard), Oct. 2008.

[192] P. Salmela and J. Melén. Host identity protocol proxy. In J. Filipe and
L. Vasiu, editors, ICETE, pages 222–230. INSTICC Press, 2005.

[193] J. Saltzer. Naming and Binding of Objects. In Operating Systems, Lecture
notes in Computer Science, Vol. 60. Springer-Verlag, 1978.

[194] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4):277–288, Nov. 1984.

[195] M. Scharf and A. Ford. Mptcp application interface considerations, Oct.
2012. Work in progress.

[196] J. Schlyter and W. Griffin. Using DNS to Securely Publish Secure Shell
(SSH) Key Fingerprints. RFC 4255 (Proposed Standard), Jan. 2006.

[197] S. Schütz, L. Eggert, S. Schmid, and M. Brunner. Protocol enhancements
for intermittently connected hosts. SIGCOMM Comput. Commun. Rev.,
35(3):5–18, July 2005.

[198] R. Seggelmann, M. Tüxen, and E. P. Rathgeb. Dtls mobility. In Proceedings
of the 13th international conference on Distributed Computing and Net-
working, ICDCN’12, pages 443–457, Berlin, Heidelberg, 2012. Springer-
Verlag.

[199] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer. Session Initia-
tion Protocol (SIP) Session Mobility. RFC 5631 (Informational), Oct. 2009.

[200] Z. Shelby and C. Bormann. 6LoWPAN: The Wireless Embedded Internet.
Wiley Publishing, 2010.

[201] C. Shields and J. J. Garcia-Luna-Aceves. The hip protocol for hierarchical
multicast routing. In Proceedings of the seventeenth annual ACM sympo-
sium on Principles of distributed computing, PODC ’98, pages 257–266,
New York, NY, USA, 1998. ACM.

[202] J. Shoch. Inter-Network Naming, Addressing, and Routing. In IEEE Proc.
COMPCON, pages 72–79. IEEE, 1978.

97

Bibliography

[203] A. C. Snoeren, H. Balakrishnan, and M. F. Kaashoek. Reconsidering in-
ternet mobility. In Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, HOTOS ’01, pages 41–, Washington, DC, USA, 2001.
IEEE Computer Society.

[204] R. Sofia, P. Nesser, and II. Survey of IPv4 Addresses in Currently Deployed
IETF Application Area Standards Track and Experimental Documents.
RFC 3795 (Informational), June 2004.

[205] H. Soliman. Mobile IPv6 Support for Dual Stack Hosts and Routers. RFC
5555 (Proposed Standard), June 2009.

[206] N. specified. OpenID Authentication 2.0 - Final, Dec. 2007.

[207] P. Srisuresh, B. Ford, and D. Kegel. State of Peer-to-Peer (P2P) Communi-
cation across Network Address Translators (NATs). RFC 5128 (Informa-
tional), Mar. 2008.

[208] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard), Sept. 2007. Updated by RFCs 6096, 6335.

[209] R. Stewart, M. Tuexen, K. Poon, P. Lei, and V. Yasevich. Sockets API
Extensions for the Stream Control Transmission Protocol (SCTP). RFC
6458 (Informational), Dec. 2011.

[210] R. Stewart, Q. Xie, M. Tuexen, S. Maruyama, and M. Kozuka. Stream
Control Transmission Protocol (SCTP) Dynamic Address Reconfiguration.
RFC 5061 (Proposed Standard), Sept. 2007.

[211] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet in-
direction infrastructure. IEEE/ACM Trans. Netw., 12(2):205–218, Apr.
2004.

[212] A. K. Tapio Levä, Miika Komu and S. Luukkainen. Adoption Barriers of
Network-layer Protocols: the Case of Host Identity Protocol. In The Inter-
national Journal of Computer and Telecommunications Networking. Else-
vier, Oct. 2012. Unpublished manuscript, submitted to Elsevier COMNET
journal.

[213] F. Templin. The Internet Routing Overlay Network (IRON). RFC 6179
(Experimental), Mar. 2011.

[214] D. Thaler. Evolution of the IP Model. RFC 6250 (Informational), May 2011.

[215] D. Thaler and B. Aboba. What Makes For a Successful Protocol? RFC 5218
(Informational), July 2008.

[216] N. D. Tom Scavo. Shibboleth Architecture, Technical Overview, 2005 June.

[217] J. Touch, D. Black, and Y. Wang. Problem and Applicability Statement for
Better-Than-Nothing Security (BTNS). RFC 5387 (Informational), Nov.
2008.

[218] J. Touch and R. Perlman. Transparent Interconnection of Lots of Links
(TRILL): Problem and Applicability Statement. RFC 5556 (Informational),
May 2009.

98

Bibliography

[219] S. Tritilanunt, C. Boyd, E. Foo, and J. M. G. Nieto. Examining the dos
resistance of hip. In OTM Workshops (1), volume 4277 of Lecture Notes in
Computer Science, pages 616–625. Springer, 2006.

[220] H. Tschofenig, M. Shanmugam, and F. Muenz. Using SRTP transport for-
mat with HIP. IETF, Aug. 2006. expired Internet draft.

[221] G. Tsirtsis, V. Park, and H. Soliman. Dual-Stack Mobile IPv4. RFC 5454
(Proposed Standard), Mar. 2009.

[222] Z. Turányi, A. Valkó, and A. T. Campbell. 4+4: an architecture for evolving
the internet address space back toward transparency. SIGCOMM Comput.
Commun. Rev., 33(5):43–54, Oct. 2003.

[223] S. Turner and L. Chen. Updated Security Considerations for the MD5
Message-Digest and the HMAC-MD5 Algorithms. RFC 6151 (Informa-
tional), Mar. 2011.

[224] J. Ubillos, M. Xu, Z. Ming, and C. Vogt. Name-Based Sockets Architecture,
Sept. 2010. Experimental and expired Internet draft, work in progress.

[225] P. Urien, D. Nyami, S. Elrharbi, H. Chabanne, T. Icart, C. Pépin, M. Bouet,
D. D. O. Cunha, V. Guyot, G. Pujolle, E. Gressier-Soudan, and J.-F. Susini.
Hip tags privacy architecture. In Proceedings of the 2008 Third Interna-
tional Conference on Systems and Networks Communications, ICSNC ’08,
pages 179–184, Washington, DC, USA, 2008. IEEE Computer Society.

[226] S. Varjonen. Secure Connectivity With Persistent Identities, Mar. 2012.

[227] S. Varjonen, T. Heer, K. Rimey, and A. Gurtov. Secure resolution of End-
Host identifiers for mobile clients. In IEEE GLOBECOM 2011 - Next Gen-
eration Networking Symposium (GC’11 - NGN), Awarded the NGN Best
Paper Award, Piscataway, NJ, USA, 12 2011. IEEE.

[228] S. Varjonen, M. Komu, and A. Gurtov. Secure and efficient ipv4/ipv6
handovers using host-based identifier-locator split. In SoftCOM’09: Pro-
ceedings of the 17th international conference on Software, Telecommunica-
tions and Computer Networks, pages 111–115, Piscataway, NJ, USA, 2009.
IEEE Press.

[229] S. Varjonen, M. Komu, and A. Gurtov. Secure and efficient ipv4/ipv6 han-
dovers using host-based identifier-locator split. In Proceedings of the 17th
international conference on Software, Telecommunications and Computer
Networks, SoftCOM’09, pages 111–115, Piscataway, NJ, USA, 2009. IEEE
Press.

[230] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates in the
Domain Name System (DNS UPDATE). RFC 2136 (Proposed Standard),
Apr. 1997. Updated by RFCs 3007, 4035, 4033, 4034.

[231] C. Vogt. Six/one router: a scalable and backwards compatible solution for
provider-independent addressing. In Proceedings of the 3rd international
workshop on Mobility in the evolving internet architecture, MobiArch ’08,
pages 13–18, New York, NY, USA, 2008. ACM.

99

Bibliography

[232] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris, and
S. Shenker. Middleboxes no longer considered harmful. In Proceedings
of the 6th conference on Symposium on Opearting Systems Design & Im-
plementation - Volume 6, OSDI’04, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[233] M. Wasserman and P. Seite. Current Practices for Multiple-Interface
Hosts. RFC 6419 (Informational), Nov. 2011.

[234] B. Wellington. Secure Domain Name System (DNS) Dynamic Update. RFC
3007 (Proposed Standard), Nov. 2000.

[235] R. Whittle. Ivip (Internet Vastly Improved Plumbing) Architecture, 2010
Mar.

[236] N. Williams. IPsec Channels: Connection Latching. RFC 5660 (Proposed
Standard), Oct. 2009.

[237] N. Williams and M. Richardson. Better-Than-Nothing Security: An Unau-
thenticated Mode of IPsec. RFC 5386 (Proposed Standard), Nov. 2008.

[238] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk. Port Control
Protocol, Mar. 2012.

[239] D. Wing, P. Patil, and T. Reddy. Mobility with ICE (MICE), July 2012.
Internet draft, work in progress.

[240] K. Winstein and H. Balakrishnan. Mosh: An Interactive Remote Shell for
Mobile Clients. In USENIX Annual Technical Conference, Boston, MA,
June 2012.

[241] J. Wu, J. Bi, X. Li, G. Ren, K. Xu, and M. Williams. A Source Address
Validation Architecture (SAVA) Testbed and Deployment Experience. RFC
5210 (Experimental), June 2008.

[242] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey.
Comput. Netw., 52(12):2292–2330, Aug. 2008.

[243] H. Yin and H. Wang. Building an application-aware ipsec policy system.
In Proceedings of the 14th conference on USENIX Security Symposium -
Volume 14, pages 21–21, Berkeley, CA, USA, 2005. USENIX Association.

[244] J. Ylitalo. Secure Mobility at Multiple Granularity Levels over Heteroge-
neous Datacom Networks, Nov. 2008. ISBN 978-951-22-9530-2.

[245] J. Ylitalo and P. Nikander. "A new Name Space for End-Points: Imple-
menting secure Mobility and Multi-homing across the two versions of IP".
In in Proc. of the Fifth European Wireless Conference, Mobile and Wireless
Systems beyond 3G, pages pp. 435–441. SCI UPC (Eds: Olga Casals, Jorge
Carcia-Vidal, Jose M Barcelo, and Llorenc Cerda), Feb. 2004.

[246] V. C. Zandy and B. P. Miller. Reliable network connections. In Proceed-
ings of the 8th annual international conference on Mobile computing and
networking, MobiCom ’02, pages 95–106, New York, NY, USA, 2002. ACM.

[247] D. Zhang, X. Xu, J. Yao, and Z. Cao. Investigation in HIP Proxies, Oct.
2011. Work in progress, Internet draft.

100

Bibliography

[248] L. Zhang. An Overview of Multihoming and Open Issues in GSE, Sept.
2006.

[249] Z. Zhang. Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: overview and challenges. Communications
Surveys & Tutorials, IEEE, 8(1):24–37, Mar. 2006.

[250] X. Zhu, Z. Ding, and X. Wang. A multicast routing algorithm applied to
hip-multicast model. In Proceedings of the 2011 International Conference
on Network Computing and Information Security - Volume 01, NCIS ’11,
pages 169–174, Washington, DC, USA, 2011. IEEE Computer Society.

101

Bibliography

102

Publication I

Miika Komu, Samu Varjonen, Sasu Tarkoma and Andrei Gurtov. Sockets

and Beyond: Assessing the Source Code of Network Applications. Linux

Symposium, Proceedings of Ottawa Linux Symposium, Technical Paper,

Ottawa, Canada, July 2012.

c© 2012 Linux Symposium.

Reprinted with permission.

103

Sockets and Beyond: Assessing the Source Code of Network
Applications

Miika Komu
Aalto University, Department of Computer Science and Engineering

miika@iki.fi

Samu Varjonen, Andrei Gurtov, Sasu Tarkoma
University of Helsinki and Helsinki Institute for Information Technology

firstname.lastname@hiit.fi

May 6, 2012

Abstract

Network applications are typically developed with
frameworks that hide the details of low-level network-
ing. The motivation is to allow developers to focus
on application-specific logic rather than low-level me-
chanics of networking, such as name resolution, relia-
bility, asynchronous processing and quality of service.
In this article, we characterize statistically how open-
source applications use the Sockets API and identify a
number of requirements for network applications based
on our analysis. The analysis considers five fundamental
questions: naming with end-host identifiers, name res-
olution, multiple end-host identifiers, multiple transport
protocols and security. We discuss the significance of
these findings for network application frameworks and
their development. As two of our key contributions, we
present generic solutions for a problem with OpenSSL
initialization in C-based applications and a multihoming
issue with UDP in all of the analyzed four frameworks.

1 Introduction

The Sockets API is the basis for all internet applica-
tions. While the number of applications using it directly
is large, some applications use it indirectly through in-
termediate libraries or frameworks to hide the intrica-
cies of the low-level Sockets API. Nevertheless, it is
then the intermediaries that still have to interface with
the Sockets API. Thus, the Sockets API is important for
all network applications either directly or indirectly but
has been studied little. To fill in this gap, we have sta-
tistically analyzed the usage of Sockets API to charac-
terize how contemporary network applications behave

in Ubuntu Linux. In addition to merely characterize the
trends, we have also investigated certain programming
pitfalls pertaining the Sockets API.

As a result, we report ten main findings and how they
impact a number of relatively new sockets API exten-
sions. To mention few examples, the poor adoption of
a new DNS look up function slows down the migration
path for the extensions dependent on it, such as the APIs
for IPv6 source address selection and HIP. OpenSSL
library is initialized incorrectly in many applications,
causing potential security vulnerabilities. The manage-
ment of the dual use of TCP/UDP transports and the
dual use of the two IP address families creates redun-
dant complexity in applications.

To escape the unnecessary complexity of the Sock-
ets API, some applications utilize network application
frameworks. However, the frameworks are themselves
based on the Sockets API and, therefore, subject to the
same scrutiny as applications using the Sockets API. For
this reason, it is natural to extend the analysis for frame-
works.

We chose four example frameworks based on the Sock-
ets API and analyzed them manually in the light of the
Sockets API findings. Since frameworks can offer high-
level abstractions that do not have to mimic the Sockets
API layout, we organized the analysis of the frameworks
in a top-down fashion and along generalized dimensions
of end-host naming, multiplicity of names and trans-
ports, name look up and security. As a highlight of the
framework analysis, we discovered a persistent problem
with multiplicity of names in all of the four frameworks.

1

To be more precise, the problem was related to multi-
homing with UDP.

In this article, we describe how to solve some of the dis-
covered issues in applications and frameworks using the
Sockets API. We also characterize some of the inherent
limitations of the Sockets API, for instance, related to
complexity.

2 Background

In this section, we first introduce the parts of the Berke-
ley Sockets and the POSIX APIs that are required to un-
derstand the results described in this article. Then, we
briefly introduce four network application frameworks
built on top of the two APIs.

2.1 The Sockets API

The Sockets API is the de facto API for network pro-
gramming due to its availability for various operating
systems and languages. As the API is rather low level
and does support object-oriented languages well, many
networking libraries and frameworks offer additional
higher-level abstractions to hide the details of the Sock-
ets API.

Unix-based systems typically provide an abstraction of
all network, storage and other devices to the applica-
tions. The abstraction is realized with descriptors which
are also sometimes called handles. The descriptors are
either file or socket descriptors. Both of them have
different, specialized accessor functions even though
socket descriptors can be operated with some of the file-
oriented functions.

When a socket descriptor is created with the socket()
function, the transport protocol has to be fixed for the
socket. In practice, SOCK_STREAM constant fixes the
transport protocol to TCP and SOCK_DGRAM constant
to UDP. For IPv4-based communications, an application
uses a constant called AF_INET, or its alias PF_INET, to
create an IPv4-based socket. For IPv6, the application
uses correspondingly AF_INET6 or PF_INET6.

2.1.1 Name Resolution

An application can look up names from DNS by calling
gethostbyname() or gethostbyaddr() functions. The former

looks up the host information from the DNS by its sym-
bolic name (forward look up) and the latter by its nu-
meric name, i.e., IP address (reverse look up). While
both of these functions support IPv6, they are obsolete
and their modern replacements are the getnameinfo() and
getaddrinfo() functions.

2.1.2 Delivery of Application Data

A client-side application can start sending data imme-
diately after creation of the socket; however, the appli-
cation typically calls the connect() function to associate
the socket with a certain destination address and port.
The connect() call also triggers the TCP handshake for
sockets of SOCK_STREAM type. Then, the networking
stack automatically associates a source address and port
with the socket if the application did not choose them
explicitly with the bind() function. Finally, a close() call
terminates the socket gracefully and, when the type of
the socket is SOCK_STREAM, the call also initiates the
shutdown procedure for TCP.

Before a server-oriented application can receive incom-
ing datagrams, it has to call a few functions. Minimally
with UDP, the application has to define the port num-
ber and IP address to listen to by using bind(). Typi-
cally, TCP-based services supporting multiple simulta-
neous clients prepare the socket with a call to the listen()
function for the following accept() call. By default, the
accept() call blocks the application until a TCP connec-
tion arrives. The function then “peels off” a new socket
descriptor from existing one that separates the particular
connection with the client from others.

A constant INADDR_ANY is used with bind() to listen for
incoming datagrams on all network interfaces and ad-
dresses of the local host. This wildcard address is typi-
cally employed in server-side applications.

An application can deliver and retrieve data from the
transport layer in multiple alternative ways. For in-
stance, the write() and read() functions are file-oriented
functions but can also be used with socket descriptors
to send and receive data. For these two file-oriented
functions, the Sockets API defines its own specialized
functions.

For datagram-oriented networking with UDP, the
sendto() and the recvfrom() functions can be used. Com-
plementary functions sendmsg() and recvmsg() offer more

2

advanced interfaces for applications [19]. They operate
on scatter arrays (multiple non-consecutive I/O buffers
instead of just one) and support also so called ancillary
data that refers to meta-data and information related to
network packet headers.

In addition to providing the rudimentary service of send-
ing and receiving application data, the socket calls also
implement access control. The bind() and connect() limit
ingress (but not egress) network access to the socket
by setting the allowed local and remote destination end
point. Similarly, the accept() call effectively constrains
remote access to the newly created socket by allowing
communications only with the particular client. Func-
tions send() and recv() are typically used for connection-
oriented networking, but can also be used with UDP to
limit remote access.

2.1.3 Customizing Networking Stack

The Sockets API provides certain default settings for ap-
plications to interact with the transport layer. The set-
tings can be altered in multiple different ways.

With “raw” sockets, a process can basically create its
own transport-layer protocol or modify the network-
level headers. A privileged process creates a raw socket
with constant SOCK_RAW.

A more constrained way to alter the default behav-
ior of the networking stack is to set socket options
with setsockopt(). As an example of the options, the
SO_REUSEADDR socket option can be used to dis-
able the default “grace period” of a locally reserved
transport-layer port. By default, consecutive calls to
bind() with the same port fail until the grace period has
passed. Especially during the development of a net-
working service, this grace period is usually disabled for
convenience because the developed service may have to
be restarted quite often for testing purposes.

2.2 Sockets API Extensions

Basic Socket Interface Extensions for IPv6 [5] de-
fine additional data structures and constants, including
AF_INET and sockaddr_in6. The extensions also define
new DNS resolver functions, getnameinfo() and getad-
drinfo(), as the old ones, gethostbyname() and gethost-
byaddr(), are now obsoleted. The older ones are not

thread safe and offer too little control over the resolved
addresses. The specification also defines IPv6-mapped
IPv4 addresses to improve IPv6 interoperability.

An IPv6 application can typically face a choice of mul-
tiple source and destination IPv6 pairs to choose from.
Picking a pair may not be a simple task because some
of the pairs may not even result in a working connectiv-
ity. IPv6 Socket API for Source Address Selection [13]
defines extensions that restrict the local or remote ad-
dress to a certain type, for instance, public or tempo-
rary IPv6 addresses. The extensions include new socket
options to restrict the selection local addresses when,
e.g., a client application connects without specifying the
source address. For remote address selection, new flags
for the getaddrinfo() resolver are proposed. The exten-
sions mainly affect client-side connectivity but can af-
fect also at the server side when UDP is being used.

The Datagram Congestion Control Protocol (DCCP) is
similar to TCP but does not guarantee in-order delivery.
An application can use it - with minor changes - by using
SOCK_DCCP constant when a socket is created.

Multihoming is becoming interesting because most of
the modern handhelds are equipped with, e.g., 3G and
WLAN interfaces. In the scope of this work, we as-
sociate “multihoming” to hosts with multiple IP ad-
dresses typically introduced by multiple network inter-
faces. Multihoming could be further be further char-
acterized whether it occurs in the initial phases of the
connectivity or during established communications. All
of the statistics in this article refer to the former case be-
cause the latter requires typically some extra logic in the
application or additional support from the lower layers.

When written correctly, UDP-based applications can
support multihoming for initial connectivity and the suc-
cess of this capability is investigated in detail in this ar-
ticle. However, supporting multihoming in TCP-based
applications is more difficult to achieve and requires ad-
ditional extensions. A solution at the application layer
is to recreate connections when they are rendered bro-
ken. At the transport layer, Multipath TCP [4] is a TCP-
specific solution to support multihoming in a way that is
compatible with legacy applications with optional APIs
for native applications [16].

The Stream Control Transmission Protocol (SCTP, [21])
implements an entirely new transport protocol with
full multihoming capabilities. In a nutshell, SCTP of-

3

fers a reliable, congestion-aware, message-oriented, in-
sequence transport protocol. The minimum requirement
to enable SCTP in an existing application is to change
the protocol type in socket() call to SCTP. However, the
application can only fully harness the benefits of the pro-
tocol by utilizing the sendmsg() and recvmsg() interface.
Also, the protocol supports sharing of a single socket de-
scriptor for multiple simultaneous communication part-
ners; this requires some additional logic in the applica-
tion.

Transport-independent solutions operating at the lower
layers include Host Identity Protocol [11] and Site Mul-
tihoming by IPv6 Intermediation (SHIM6) [12]. In
brief, HIP offers support for end-host mobility, mul-
tihoming and NAT traversal. By contrast, SHIM6 is
mainly a multihoming solution. From the API perspec-
tive, SHIM6 offers backwards compatible identifiers for
IPv6 - in the sense that they are routable at the network
layer - where as the identifiers in HIP are non-routable.
HIP has its own optional APIs for HIP-aware applica-
tions [9] but both protocols share the same optional mul-
tihoming APIs [8].

Name-based Sockets are a work-in-progress at the IETF
standardization forum. While the details of the spec-
ification [23] are rather immature and the specification
still lacks official consent of the IETF, the main idea is to
provide extensions to the Sockets API that replace IP ad-
dresses with DNS-based names. In this way, the respon-
sibility for the management of IP addresses is pushed
down in the stack, away from the application layer.

2.3 NAT Traversal

Private address realms [18] were essentially introduced
by NATs but also Virtual Private Networks (VPNs) and
other tunneling solutions can also make use of private
addresses. Originally, the concept of virtual address
spaces was created to alleviate the depletion of the IPv4
address space, perhaps, because it appeared that most
client hosts did not need publicly-reachable addresses.
Consequently, NATs also offer some security as a side
effect to the client side because they discard new incom-
ing data flows by default.

To work around NATs, Teredo [7] offers NAT traver-
sal solution based on a transparent tunnel to the applica-
tions. The protocol tries to penetrate through NAT boxes
to establish a direct end-to-end tunnel but can resort to

triangular routing through a proxy in the case of an un-
successful penetration.

2.4 Transport Layer Security

Transport Layer Security (TLS) [22] is a cryptographic
protocol that can be used to protect communications
above the transport layer. TLS, and its predecessor Se-
cure Socket Layer (SSL), are the most common way to
protect TCP-based communications over the Internet.

In order to use SSL or TLS, a C/C++ application is usu-
ally linked to a library implementation such as OpenSSL
or GNU TLS. The application then calls the APIs of
the TLS/SSL-library instead of using the APIs of the
Sockets API. The functions of the library are wrappers
around the Sockets API, and are responsible for secur-
ing the data inside the TCP stream.

2.5 Network Frameworks

The Sockets API could be characterized as somewhat
complicated and error-prone to be programmed directly.
It is also “flat” by its nature because it was not designed
to accommodate object-oriented languages. For these
reasons, a number of libraries and frameworks have
been built to hide the details of the Sockets API and
to introduce object-oriented interfaces. The Adaptive
Communication (ACE) [17] is one such framework.

ACE simplifies the development of networking applica-
tions because it offers abstracted APIs based on net-
work software patterns observed in well-written soft-
ware. Among other things, ACE includes network
patterns related to connection establishment and ser-
vice initialization in addition to facilitating concurrent
software and distributed communication services. It
supports asynchronous communications by inversion of
control, i.e., the framework takes over the control of the
program flow and it invokes registered functions of the
application when needed.

Boost::Asio is another open source C++ library that of-
fers high-level networking APIs to simplify develop-
ment of networking applications. Boost::Asio aims to
be portable, scalable, and efficient but, most of all, it
provides a starting point for implementing further ab-
straction. Several Boost C++ libraries have already been
included in the C++ Technical Report 1 and in C++11.

4

In 2006 a networking proposal based on Asio was sub-
mitted to request inclusion in the upcoming Technical
Report 2.

Java provides an object-oriented framework for the cre-
ation and use of sockets. Java.net package (called
Java.net from here on) supports TCP (Socket class) and
UDP (Datagram class). These classes implement com-
munication over an IP network.

Twisted is a modular, high-level networking framework
for python. Similarly as ACE, also Twisted is based
on inversion of control and asynchronous messaging.
Twisted has built-in support for multiple application-
layer protocols, including IRC, SSH and HTTP. What
distinguishes Twisted from the other frameworks is
the focus on service-level functionality based adapt-
able functionality that can be run on top of several
application-layer protocols.

3 Materials and Methods

We collected information related to the use of Sockets
API usage in open-source applications. In this article,
we refer to this information as indicators. An indicator
refers to a constant, structure or function of the C lan-
guage. We analyzed the source code for indicators in
a static way (based on keywords) rather than dynam-
ically 1. The collected set of indicators was limited
to networking-related keywords obtained from the key-
word indexes of two books [20, 15].

We gathered the material for our analysis from all of the
released Long-Term Support (LTS) releases of Ubuntu:
Dapper Drake 6.06, Hardy Heron 8.04, Lucid Lynx
10.04. Table 1 summarizes the number of software
packages gathered per release. In the table, “patched”
row expresses how many applications were patched by
Ubuntu.

We used sections “main”, “multiverse”, “universe” and
“security” from Ubuntu. The material was gathered on
Monday 7th of March 2011 and was constrained to soft-
ware written using the C language. Since our study was
confined to networking applications, we selected only
software in the categories of “net”, “news”, “comm”,
“mail”, and “web” (in Lucid, the last category was re-
named “httpd”).

1Authors believe that a more dynamic or structural analysis
would not have revealed any important information on the issues
investigated

Dapper Hardy Lucid
Total 1,355 1,472 1,147
Patched 1,222 1,360 979
C 721 756 710
C++ 57 77 88
Python 126 148 98
Ruby 19 27 13
Java 9 10 8
Other 423 454 232

Table 1: Number of packages per release version.

We did not limit or favor the set of applications, e.g.,
based on any popularity metrics. We believed that an
application was of at least of some interest if the applica-
tion was being maintained by someone in Ubuntu. To be
more useful for the community, we analyzed all network
applications and did not discriminate some “unpopu-
lar” minorities. This way, we did not have to choose
between different definitions of popularity – perhaps
Ubuntu popularity contest would have served as a de-
cent metric for popularity. We did perform an outlier
analysis in which we compared the whole set of appli-
cations to the most popular applications (100 or more
installations). We discovered that the statistical “foot-
print” of the popular applications is different from the
whole. However, the details are omitted because this
contradicted with our goals.

In our study, we concentrated on the POSIX networking
APIs and Berkeley Sockets API because they form the
de-facto, low-level API for all networking applications.
However, we extended the API analysis to OpenSSL to
study the use of security as well. All of these three APIs
have bindings for high-level languages, such as Java and
Python, and can be indirectly used from network appli-
cation frameworks and libraries. As the API bindings
used in other languages differs from those used in C lan-
guage, we excluded other languages from this study.

From the data gathered 2, we calculated sums and means
of the occurrences of each indicator. Then we also cal-
culated a separate “reference” number. This latter was
formed by introducing a binary value to denote whether
a software package used a particular indicator (1) or not
(0), independent of the number of occurrences. The
reference number for a specific indicator was collected
from all software packages, and these reference num-
bers were then summed and divided by the number of

2http://www.cs.helsinki.fi/u/sklvarjo/LS12/

5

packages to obtain a reference ratio. In other words, the
reference ratio describes the extent of an API indicator
with one normalized score.

We admit that the reference number is a very coarse
grained metric; it indicates capability rather than 100%
guarantee that the application will use a specific indica-
tor for all its runs. However, it’s binary (or “flattened”)
nature has one particular benefit that cancels out an un-
wanted side effect of the static code analysis, but this
is perhaps easiest to describe by example. Let us con-
sider an application where memory allocations and de-
allocations can be implemented in various ways. The
application can call malloc() a hundred times but then
calls free() only once. Merely looking at the volumes
of calls would give a wrong impression about mem-
ory leaks because the application could have a wrapper
function for free() that is called a hundred times. In con-
trast, a reference number of 1 for malloc() and 0 for free()
indicates that the application has definitely one or more
memory leak. Correspondingly, the reference ratio de-
scribes this for the entire population of the applications.

In our results, we show also reference ratios of com-
bined indicators that were calculated by taking an union
or intersection of indicators, depending on the use case.
With combined indicators, we used tightly coupled in-
dicators that make sense in the context of each other.

4 Results and Analysis

In this section, we show the most relevant statistical re-
sults. We focus on the findings where there is room for
improvement or that are relevant to the presented Sock-
ets API extensions. Then, we highlight the most signif-
icant patterns or key improvements for the networking
applications. Finally, we derive a set of more generic
requirements from the key improvements and see how
they are met in four different network application frame-
works.

4.1 Core Sockets API

In this section, we characterize how applications use
the “core” Sockets API. Similarly as in the background,
the topics are organized into sections on IPv6, DNS,
transport protocols and customization of the networking
stack. In the last section, we describe a multihoming
issue related to UDP.

In the results, the reference ratios of indicators are usu-
ally shown inside brackets. All numeric values are from
Ubuntu Lucid unless otherwise mentioned. Figure 1 il-
lustrates some of the most frequent function indicators
by their reference ratio and the following sections ana-
lyze the most interesting cases in more detail.

4.1.1 IPv6

According to the usage of AF and PF constants, 39.3%
were IPv4-only applications, 0.3% IPv6-only, 26.9%
hybrid and 33.5% did not reference either of the con-
stants. To recap, while the absolute use of IPv6 was not
high, the relative proportion of hybrid applications sup-
porting both protocols was quite high.

4.1.2 Name Resolution

The obsolete DNS name-look-up functions were refer-
enced more than their modern replacements. The obso-
lete forward look-up function gethostbyname() was refer-
enced roughly twice more than its modern replacement
getaddrinfo(). Two possible explanations for this are that
either that the developers have, for some reason, pre-
ferred the obsolete functions, or have neglected to mod-
ernize their software.

4.1.3 Packet Transport

Connection and datagram-oriented APIs were roughly
as popular. Based on the usage of SOCK_STREAM
and SOCK_DGRAM constants, we accounted for 25.1%
TCP-only and 11.0% UDP-only applications. Hybrid
applications supporting both protocols accounted for
26.3% - which leaves 37.6% of the applications that
used neither of the constants. By combining the hy-
brids with TCP-only applications, the proportion of ap-
plications supporting TCP is 51.4% and, correspond-
ingly, 37.3% for UDP. It should not be forgotten that
typically all network applications implicitly access DNS
over UDP by default.

4.1.4 Customizing Networking Stack

While the Sockets API provides transport-layer abstrac-
tions with certain system-level defaults, many applica-
tions preferred to customize the networking stack or

6

re
ad so

ck
et

w
rit

e ht
on

s

sig
na

l fo
rk

se
le
ct

co
nn

ec
t

nt
oh

s bin
d

ge
th

os
tb
yn

am
e ht

on
l

io
ct

l

se
ts

oc
ko

pt

ge
tti
m

eo
fd

ay

in
et

_n
to

a

fc
nt

l
ac

ce
pt

nt
oh

l

op
en

lo
g

0

10

20

30

40

50

60

70

P
e

rc
e

n
ta

g
e

Figure 1: The most frequent functions in Ubuntu Lucid

to override some of the parameters. The combined
reference ratio of SOCK_RAW, setsockopt(), pcap_pkthdr
and ipq_create_handle() indicators was 51.4%. In other
words, the default abstraction or settings of the Sockets
API are not sufficient for the majority of the applica-
tions.

It is worth mentioning that we conducted a brute-force
search to find frequently occurring socket options sets.
As a result, we did not find any recurring sets but merely
individual socket options that were popular.

4.1.5 Multihoming and UDP

In this section, we discuss a practical issue related
to UDP-based multihoming, but one which could
be fixed in most applications by the correct use of
SO_BINDTODEVICE (2.3%) socket option. The issue af-
fects UDP-based applications accepting incoming con-
nections from multiple interfaces or addresses.

On Linux, we have reason to believe that many UDP-
based applications may not handle multihoming prop-
erly for initial connections. The multihoming problem
for UDP manifests itself only when a client-side appli-
cation uses a server address that does not match with the
default route at the server. The root of the problem lies
in egress datagram processing at the server side.

The UDP problem occurs when the client sends a “re-
quest” message to the server and the server does not
send a “response” using the exact same address pair that
was used for the request. Instead, the sloppy server im-
plementation responds to the client without specifying
the source address, and the networking stack invariably
chooses always the wrong source address - meaning that

the client drops the response as it appears to be arriving
from a previously unknown IP address.

A straightforward fix is to modify the server-side pro-
cessing of the software to respect the original IP address,
and thus to prevent the network stack from routing the
packet incorrectly. In other words, when the server-side
application receives a request, it should remember the
local address of the received datagram and use it explic-
itly for sending the response.

Explicit source addressing can be realized by using the
modern sendmsg() interface. However, a poorly docu-
mented alternative to be used especially with the sendto()
function is the socket option called SO_BINDTODEVICE.
The socket option is necessary because bind() can only
be used to specify the local address for the ingress di-
rection (and not the egress).

We discovered the UDP problem by accident with iperf,
nc and nc6 software. We have offered fixes to main-
tainers of these three pieces of software. Nevertheless,
the impact of the problem may be larger as a third of
the software in our statistics supports UDP explicitly.
To be more precise, the lack of SO_BINDTODEVICE us-
age affects 45.7% (as an upper bound) of the UDP-
capable software, which accounts for a total of 121
applications. This figure was calculated by finding
the intersection of all applications not using sendmsg()
and SO_BINDTODEVICE, albeit still using sendto() and
SOCK_DGRAM. We then divided this by the number of
applications using SOCK_DGRAM.

4.2 Sockets API Extensions

In this section, we show and analyze statistics on SSL
and the adoption of a number of Sockets API extensions.

7

4.2.1 Security: SSL/TLS Extensions

Roughly 10.9% of the software in the data set used
OpenSSL and 2.1% GNU TLS. In this section, we limit
the analysis on OpenSSL because it is more popular.
Unless separately mentioned, we will, for convenience,
use the term SSL to refer both TLS and SSL protocols.
We only present reference ratios relative to the applica-
tions using OpenSSL because this is more meaningful
from the viewpoint of the analysis. In other words, the
percentages account only the 77 OpenSSL-capable ap-
plications and not the whole set of applications.

The applications using OpenSSL consisted of both
client and server software. The majority of the appli-
cations using OpenSSL (54%) consisted of email, news
and messaging software. The minority included net-
work security and diagnostic, proxy, gateway, http and
ftp server, web browsing, printing and database soft-
ware.

The reference ratios of SSL options remained roughly
the same throughout the various Ubuntu releases. The
use of SSL options in Ubuntu Lucid is illustrated in Fig-
ure 2.

The use of SSL_get_verify_result() function (37.7%) indi-
cates that a substantial proportion of SSL-capable soft-
ware has interest in obtaining the results of the certifi-
cate verification. The SSL_get_peer_certificate() function
(64.9%) is used to obtain the certificate sent by the peer.

The use of the SSL_CTX_use_privatekey_file() function
(62.3%) implies that a majority of the software is capa-
ble of using private keys stored in files. A third ((27.3%)
of the applications uses the SSL_get_current_cipher()
function to request information about the cipher used
for the current session.

The SSL_accept() function (41.6%) is the SSL equivalent
for accept(). The reference ratio of SSL_connect() func-
tion (76.6%), an SSL equivalent for connect(), is higher
than for ssl_accept() (41.6%). This implies that the data
set includes more client-based applications than server-
based. Furthermore, we observed that SSL_shutdown()
(63.6%) is referenced in only about half of the software
that also references SSL_connect(), indicating that clients
leave dangling connections with servers (possibly due to
sloppy coding practices).

We noticed that only 71.4% of the SSL-capable soft-
ware initialized the OpenSSL library correctly. The cor-

Bug workarounds

SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION

SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS

SSL_OP_CIPHER_SERVER_PREFERENCE

SSL_OP_SINGLE_DH_USE

SSL_OP_NO_TLSv1

SSL_OP_NO_SSLv3

SSL_OP_NO_SSLv2

SSL_OP_ALL

0 5 10 15 20 25 30

Figure 2: The number of occurrences of the most com-
mon SSL options

rect procedure for a typical SSL application is that it
should initialize the library with SSL_library_init() func-
tion (71.4%) and provide readable error strings with
SSL_load_error_strings() function (89.6%) before any
SSL action takes place. However, 10.4% of the SSL-
capable software fails to provide adequate error han-
dling.

Only 58.4% of the SSL-capable applications seed
the Pseudo Random Number Generator (PRNG)
with RAND_load_file() (24.7%), RAND_add() (6.5%) or
RAND_seed() (37.7%). This is surprising because incor-
rect seeding of the PRNG is considered a common se-
curity pitfall.

Roughly half of the SSL-capable software set the con-
text options for SSL with SSL_CTX_set_options (53.3%);
this modifies the default behavior of the SSL implemen-
tation. The option SSL_OP_ALL (37.7%) enables all bug
fixes.

SSL_OP_NO_SSLV2 option (31.2%) turns off SSLv2 and
respectively SSL_OP_NO_SSLV3 (13.0%) turns off the
support for SSLv3. The two options were usually com-
bined so that the application would just use TLSv1.

SSL_OP_SINGLE_DH_USE (7.8%) forces the implemen-
tation to re-compute the private part of the Diffie-
Hellman key exchange for each new connection. With
the exception of low-performance CPUs, it is usually
recommended that this option to be turned on since it
improves security.

The option SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS
(6.5%) disables protection against an attack on the
block-chaining ciphers. The countermeasure is disabled
because some of the SSLv3 and TLSv1 implementa-
tions are unable to handle it properly.

8

37.7% of the SSL-capable software prefers to use only
TLSv1 (TLSv1_client_method()) and 20.1% of the SSL-
capable software prefers to fall back from TLSv1 to
SSLv3 when the server does not support TLSv1. How-
ever, the use of SSL_OP_NO_TLSV1 option indicates that
7% of the software is able to turn off TLSv1 support
completely. SSL_OP_CIPHER_SERVER_PREFERENCE
is used to indicate that the server’s preference
in the choosing of the cipher takes precedence.
SSL_OP_NO_SESSION_RESUMPTION_RENEGOTIATION
indicates the need for increased security as session
resumption is disallowed and a full handshake is always
required. The remaining options are workarounds for
various bugs.

As a summary of the SSL results, it appears that SSL-
capable applications are interested of the details of the
security configuration. However, some applications ini-
tialize OpenSSL incorrectly and also trade security for
backwards compatibility.

4.2.2 IPv6-Related Extensions

During the long transition to IPv6, we believe that the
simultaneous co-existence of IPv4 and IPv6 still repre-
sents problems for application developers. For example,
IPv6 connectivity is still not guaranteed to work every-
where. At the client side, this first appears as a problem
with DNS look-ups if they are operating on top of IPv6.
Therefore, some applications may try to look up simul-
taneously over IPv4 and IPv6 [25]. After this, the appli-
cation may even try to call connect() simultaneously over
IPv4 and IPv6. While these approaches can decrease the
initial latency, they also generate some additional traf-
fic to the Internet and certainly complicate networking
logic in the application.

At the server side, the applications also have to main-
tain two sockets: one for IPv4 and another for IPv6. We
believe this unnecessarily complicates the network pro-
cessing logic of applications and can be abstracted away
by utilizing network-application frameworks.

An immediate solution to the concerns regarding ad-
dress duplication is proposed in RFC4291 [6], which
describes IPv6-mapped IPv4 addresses. The idea is to
embed IPv4 addresses in IPv6 address structures and
thus to provide a unified data structure format for storing
addresses in the application.

Mapped addresses can be employed either manually or
by the use of AI_V4MAPPED flag for the getaddrinfo() re-
solver. However, the application first has to explicitly
enable the IPV6_V6ONLY socket option (0.1%) before
the networking stack will allow the IPv6-based socket to
be used for IPv4 networking. By default, IPv4 connec-
tivity with IPv6 sockets is disallowed in Linux because
they introduce security risks [10]. As a bad omen, of
the total six applications referencing the AI_V4MAPPED
flag, only one of them set the socket option as safe
guard.

The constants introduced by the IPv6 Socket API for
Source Address Selection [13] are available in Ubuntu
Lucid even though the support is incomplete. The flags
to extend the getaddrinfo() resolver and the proposed
auxiliary functions remain unavailable and only source
address selection through socket options is available.
Nevertheless, we calculated the proportion of IPv6-
capable client-side applications that explicitly choose a
source address. As an upper bound, 66.9% percent ap-
plications choose source addresses explicitly based the
dual use of connect() and bind(). This means that a major-
ity of IPv6 applications might be potentially interested
of the extensions for IPv6 Socket API for Source Ad-
dress Selection.

4.2.3 Other Protocol Extensions

The use of SCTP was very minimal in our set of ap-
plications and only three applications used SCTP. Net-
perf is a software used for benchmarking the network
performance of various protocols. Openser is a flexi-
ble SIP proxy server. Linux Kernel SCTP tools (lksctp-
tools) can be used for testing SCTP functionality in the
userspace.

As with SCTP, DCCP was also very unpopular. It was
referenced only from a single software package, despite
it being easier to embed in an application by merely us-
ing the SOCK_DCCP constant in the socket creation.

As described earlier, multipath TCP, HIP and SHIM6
have optional native APIs. The protocols can be used
transparently by legacy applications. This might boost
their deployment when compared with the mandatory
changes in applications for SCTP and DCCP.

The APIs for HIP-aware applications [9] may also face
a similar slow adoption path because the APIs require a

9

new domain type for sockets in the Linux kernel. While
getaddrinfo() function can conveniently look up “wild-
card” domain types, the success of this new DNS re-
solver (23.5%) is still challenged by the deprecated geth-
ostbyname() (43.3%). SHIM6 does not face the same
problem as it works without any changes to the re-
solver and connections can be transparently “upgraded”
to SHIM6 during the communications.

The shared multihoming API for HIP- and SHIM6-
aware applications [8] may have a smoother migration
path. The API relies heavily on socket options and little
on ancillary options. This strikes a good balance be-
cause setsockopt() is familiar to application developers
(42.8%) and sendmsg() / recvmsg() with its ancillary op-
tion is not embraced by many (7%). The same applies
to the API for Multipath TCP [16] that consists solely of
socket options.

4.2.4 A Summary of the Sockets API Findings and
Their Implications

Table 2 highlights ten of the most important findings in
the Sockets APIs. Next, we go through each of them and
argue their implications to the development of network
applications.

Core Sockets API
1 IPv4-IPv6 hybrids 26.9%
2 TCP-UDP hybrids 26.3%
3 Obsolete DNS resolver 43.3%
4 UDP-based apps with multihoming issue 45.7%
5 Customize networking stack 51.4%
OpenSSL-based applications
6 Fails to initialize correctly 28.6%
7 Modifies default behavior 53.3%
8 OpenSSL-capable applications in total 10.9%
Estimations on IPv6-related extensions
9 Potential misuse with mapped addresses 83.3%
10 Explicit IPv6 Source address selection 66.9%

Table 2: Highlighted indicator sets and their reference
ratios

Finding 1. The number of hybrid applications support-
ing both IPv4 and IPv6 was fairly large. While this is a
good sign for the deployment of IPv6, the dual address-
ing scheme doubles the complexity of address manage-
ment in applications. At the client side, the application
has to choose whether to handle DNS resolution over

IPv4 or IPv6, and then create the actual connection with
either family. As IPv6 does not even work everywhere
yet, the client may initiate communications in parallel
with IPv4 and IPv6 to minimize latency. Respectively,
server-side applications have to listen for incoming data
flows on both families.

Finding 2. The hybrid applications using both TCP
and UDP amounted as much as TCP-only applications.
Thus, application developers seem to write many appli-
cation protocols to be run on with both transports. While
it is possible to write almost identical code for the two
transports, the Sockets API favors different functions for
the two. This unnecessarily complicates the application
code.

Finding 3. The obsolete DNS resolver was referenced
twice as more than the new one. This has negative im-
plications on the adoption of new Sockets API exten-
sions that are dependent on the new resolver. As con-
crete examples, native APIs for HIP and source address
selection for IPv6 may experience a slow adoption path.

Finding 4. We discovered a UDP multihoming problem
at the server side based on our experiments with three
software included in the data set. As an upper bound,
we estimated that the same problem affects 45.7% of
the UDP-based applications.

Finding 5. Roughly half of the networking software is
not satisfied with the default configuration of network-
ing stack and alters it with socket options, raw sockets or
other low-level hooking. However, we did not discover
any patterns (besides few popular, individually recurring
socket options) to propose as new compound socket op-
tion profiles for applications.

Findings 6, 7 and 8. Roughly every tenth application
was using OpenSSL but surprisingly many failed to ini-
tialize it appropriately, thus creating potential security
vulnerabilities. Half of the OpenSSL-capable applica-
tions were modifying the default configuration in some
way. Many of these tweaks improved backwards com-
patibility at the expense of security. This opens a ques-
tion why backwards compatibility is not well built into
OpenSSL and why so many “knobs” are even offered to
the developer3.

3Some of the implementations of SSL/TLS are considered “bro-
ken”; they do not implement at all or fix incorrectly some of the bugs
and/or functionalities in SSL/TLS.

10

Finding 9. IPv6-mapped IPv4 addresses should not be
leaked to the wire for security reasons. As a solution,
the socket option IPV6_V6ONLY would prevent this leak-
age. However, only one out of total six applications
using mapped addresses were actually using the socket
option. Despite the number of total applications using
mapped address in general was statistically small, this
is an alarming sign because the number can grow when
the number of IPv6 applications increases.

Finding 10. IPv6 source address selection lets an appli-
cation to choose the type of an IPv6 source address in-
stead of explicitly choosing one particular address. The
extensions are not adopted yet, but we estimated the
need for them in our set of applications. Our coarse-
grained estimate is that two out of three IPv6 applica-
tions might utilize the extensions.

We have now characterized current trends with C-based
applications using Sockets API directly and highlighted
ten important findings. Of these, we believe findings 3,
4, 6 and 9 can be directly used to improved the exist-
ing applications in our data set. We believe that most of
the remaining ones are difficult to improve without in-
troducing changes to the Sockets API (findings 1, 2, 5)
or without breaking interoperability (finding 7). Also,
many of the applications appear not to need security at
all (finding 8) and the adoption of extensions (finding
10) may just take some time.

As some of the findings are difficult to adapt to the appli-
cations using Sockets API directly, perhaps indirect ap-
proaches as offered by network application frameworks
may offer easier migration path. For example, the first
two findings are related to management of complexity
in the Sockets API and frameworks can be used to hide
such complexity from the applications.

4.3 Network Application Frameworks

In this section, we investigate four network application
frameworks based the Sockets and POSIX API. In a
way, these frameworks are just other “applications” us-
ing the Sockets API and, thus, similarly susceptible to
the same analysis as the applications in the previous
sections. However, the benefits of improving a sin-
gle framework transcend to numerous applications as
frameworks are utilized by several applications. The
Sockets API may be difficult to change, but can be eas-
ier to change the details how a framework implements

the complex management of the Sockets API behind its
high-level APIs.

4.3.1 Generic Requirements for Modern Frame-
works

Instead of applying the highlighted findings described in
Section 4.2.4 directly, we some modifications due to the
different nature of network application frameworks.

Firstly, we reorganize the analysis “top down” and split
the topics into end-host naming, look up, multiplicity of
names and transport protocols and security. We also be-
lieve that the reorganization may be useful for extending
the analysis in the future.

Secondly, we arrange the highlighted findings according
to their topic. A high-level framework does not have
to follow the IP address oriented layout of the Sockets
API and, thus, we investigate the use of symbolic host
names as well. The reconfiguration of the stack (finding
5) was popular but we could not suggest any significant
improvements on it, so it is omitted. Finally, we split
initiating of parallel connectivity with IPv4 and IPv6 as
their own requirements for both transport connections
and DNS look ups.

Consequently, the following list reflects the Sockets API
findings as modified requirements for network applica-
tion frameworks:

R1: End-host naming

R1.1 Does the API of the framework support sym-
bolic host names in its APIs, i.e., does the
framework hide the details of hostname-to-
address resolution from the application? If
this is true, the framework conforms to a sim-
ilar API as proposed by Name Based Sockets
as described in section 2.2. A benefit of this
approach is that implementing requirements
R1.2, R2.2, R3.1 and 3.3 becomes substan-
tially easier.

R1.2 Are the details of IPv6 abstracted away from
the application? In general, this requirement
facilitates adoption of IPv6. It could also be
used for supporting Teredo based NAT traver-
sal transparently in the framework.

11

R1.3 IPv6-mapped addresses should not be present
on the wire for security reasons. Thus, the
framework should manually convert mapped
addressed to regular IPv4 addresses before
passing to any Sockets API calls. Al-
ternatively, the frameworks can use the
AI_V4MAPPED option as a safe guard to pre-
vent such leakage.

R2: Look up of end-host names

R2.1 Does the framework implement DNS look
ups with getaddrinfo()? This is important for
IPv6 source address selection and native HIP
API extensions because they are dependent
on this particular function.

R2.2 Does the framework support parallel DNS
look ups over IPv4 and IPv6 to optimize la-
tency?

R3: Multiplicity of end-host names

R3.1 IPv6 source address selection is not widely
adopted yet but is the framework modular
enough to support it especially at the client
side? As a concrete example, the frame-
work should support inclusion of new param-
eters to its counterpart of connect() call to sup-
port application preferences for source ad-
dress types.

R3.2 Does the server-side multihoming for UDP
work properly? As described earlier, the
framework should use SO_BINDTODEVICE
option or sendmsg()/recvmsg() interfaces in a
proper way.

R3.3 Does the framework support parallel connect()
over IPv4 and IPv6 to minimize the latency
for connection set-up?

R4: Multiplicity of transport protocols

R4.1 Are TCP and UDP easily interchangeable?
“Easy” here means that the developer merely
changes one class or parameter but the APIs
are the same for TCP and UDP. It should be
noted that this has also implications on the
adoption of SCTP and DCCP.

R5: Security

R5.1 Does the framework support SSL/TLS?

R5.2 Does the SSL/TLS interface provide reason-
able defaults and abstraction so that the de-
veloper does not have to configure the details
of the security?

R5.3 Does the framework initialize the SSL/TLS
implementation automatically?

4.3.2 ACE

ACE version 6.0.0 denotes one end of a transport-layer
session with ACE_INET_Addr class that can be initiated
both based on a symbolic host name and a numeric
IP address. Thus, the support for IPv6 is transparent
if the developer resorts solely on host names and uses
AF_UNSPEC to instantiate the class. ACE supports also
storing of IPv4 addresses in the IPv6-mapped format in-
ternally but translates them to the normal IPv4 format
before returning them to the requesting application or
using on the wire.

In ACE, IP addresses can be specified using strings.
This provides a more unified format to name hosts.

ACE supports getaddrinfo() function and resorts to get-
nameinfo() only when the OS (e.g. Windows) does not
support getaddrinfo().

With UDP, ACE supports both connected (class
ACE_SOCK_CODgram) and disconnected communica-
tions (class ACE_SOCK_Dgram). We verified the UDP
multihoming problem with test software included in the
ACE software bundle. More specifically, we managed
to repeat the problem with connected sockets which
means that the ACE library shares the same bug as
iperf, nc and nc6 software as described earlier. Dis-
connected UDP communications did not suffer from this
problem because ACE does not fix the remote commu-
nication end-point for such communications with con-
nect(). It should be also noted that a separate class,
ACE_Multihomed_INET_Addr, supports multiaddressing
natively.

A client can connect to a server using TCP with class
ACE_SOCK_Connector in ACE. The instantiation of the
class supports flags which could be used for extending
ACE to support IPv6 source address selection in a back-
wards compatible manner. While the instantiation of
connected UDP communications does not have a similar

12

flag, it still includes few integer variables used as binary
arguments that could be overloaded with the required
functionality. Alternatively, new instantiation functions
with different method signature could be defined using
C++. As such, ACE seems modular enough to adopt
IPv6 source address selection with minor changes.

For basic classes, ACE does not support ac-
cepting of communications simultaneously with
both IPv4 and IPv6 at the server side. Class
ACE_Multihomed_INET_Addr has to be used to sup-
port such behaviour more seamlessly but it can be used
both at the client and server side.

Changing of the transport protocol in ACE is straight-
forward. Abstract class ACE_Sock_IO defines the ba-
sic interfaces for sending and transmitting data. The
class is implemented by two classes: an applica-
tion instantiates ACE_Sock_Stream class to use TCP or
ACE_SOCK_Dgram to use UDP. While both TCP and
UDP-specific classes supply some additional transport-
specific methods, switching from one transport to an-
other occurs merely by renaming the type of the class
at the instantiation, assuming the application does not
need the transport-specific methods.

ACE supports SSL albeit it is not as interchangeable as
TCP with UDP. ACE has wrappers around accept() and
connect() calls in its Acceptor-Connector pattern. This
hides the intricacies of SSL but all of the low-level de-
tails are still configurable when needed. SSL is initial-
ized automatically and correctly.

4.3.3 Boost::Asio

Boost::Asio version 1.47.0 provides a class for denot-
ing one end of a transport-layer session called endpoint
that can be initiated through resolving a host name or a
numeric IP. By default, the resolver returns a set of end-
points that may contain both IPv4 and IPv6 addresses
4. These endpoints can be given directly to the con-
nect() wrapper in the library that connects sequentially
to the addresses found in the endpoint set until it suc-
ceeds. Thus, the support for IPv6 is transparent if the
developer has chosen to rely on host names. Boost::Asio
can store IPv4 addresses in the IPv6-mapped form. By
default, the mapped format is used only when the de-
veloper explicitly sets the family of the address to be

4IPv6 addresses are queried only when IPv6 loopback is present

queried to IPv6 and the query results contain no IPv6
addresses. The mapped format is only used internally
and converted to IPv4 before use on the wire.

Boost::Asio uses POSIX getaddrinfo() when the under-
lying OS supports it. On systems such as Windows
(older than XP) and Cygwin, Boost::Asio emulates
getaddrinfo() function by calling gethostbyaddr() and geth-
ostbyname() functions. The resolver in Boost::Asio in-
cludes flags that could be used for implementing source
address selection (and socket options are supported as
well).

Boost::Asio does not support parallel IPv4 and IPv6
queries, nor does it provide support for simultaneous
connection set up using both IPv4 and IPv6.

We verified the UDP multihoming problem with exam-
ple software provided with the Boost::Asio. We man-
aged to repeat the UDP multihoming problem with con-
nected sockets which means that the Boost::Asio library
shares the same bug as iperf, nc and nc6 as described
earlier.

Boost::Asio defines basic interfaces for sending and re-
ceiving data. An application instantiates ip::tcp::socket
to use TCP or ip::udp::socket to use UDP. While
both classes provide extra transport-specific methods,
switching from one transport to another occurs merely
by renaming the type of the class at the instantiation
assuming the application does not need the transport-
specific methods.

Boost::Asio supports SSL and TLS. The initial-
ization is wrapped into the SSL context creation.
In Boost::Asio, the library initialization is actually
done twice as OpenSSL_add_ssl_algorithms() is a syn-
onym of SSL_library_init() and both are called sequen-
tially. PRNG is not automatically initialized with
RAND_load_file(), RAND_add() or RAND_seed(), although
Boost::Asio implements class random_device which can
be easily used in combination with RAND_seed() to seed
the PRNG.

4.3.4 Java.net

Java.net in OpenJDK Build b147 supports both auto-
mated connections and manually created ones. Within a
single method that inputs a host name, its API hides re-
solving a host name to an IP address from DNS, creation

13

of the socket and connecting the socket. Alternatively,
the application can manage all of the intermediate steps
by itself.

The API has a data structure to contain multiple ad-
dresses from DNS resolution. The default is to try a
connection only with a single address upon request, al-
beit this is configurable. The internal presentation of
a single address, InetAddress, can hold an IPv4 or IPv6
address and, therefore, the address family is transpar-
ent when the developer resorts solely on the host names.
The API supports v4_mapped address format as an inter-
nal presentation format but it is always converted to the
normal IPv4 address format before sending data to the
network.

Before using IPv6, Java.net checks the existence of the
constant AF_INET6 and that a socket can be associated
with a local IPv6 address. If java.net discovers support
for IPv6 in the local host, it uses the getaddrinfo() but
otherwise gethostbyname() function for name resolution.
DNS queries simultaneously over IPv4 and IPv6 are not
supported out-of-the-box. However, the SIP ParallelRe-
solver package in SIP communicator 5 could be used to
implement such functionality.

We verified the UDP multihoming problem with exam-
ple software provided with the java.net. We managed to
repeat the UDP multihoming problem with connected
sockets. This means that the java.net library shares the
same bug as iperf, nc and nc6 as described earlier.

Java.net naming convention favors TCP because a
“socket” always refers to a TCP-based socket. If the
developer needs a UDP socket, he or she has to instanti-
ate a DatagaramSocket class. Swapping between the two
protocols is not trivial because TCP-based communica-
tion uses streams, where as UDP-based communication
uses DatagramPacket objects for I/O.

IPv6 source address selection is implementable in
java.net. TCP and UDP-based sockets could include a
new type of constructor or method, and java has socket
options as well. The method for DNS look ups, InetAd-
dress.getByName(), is not extensive enough and would
need an overloaded method name for the purpose.

Java.net supports both SSL and TLS. Their details are
hidden by abstraction, although it is possible to config-
ure them explicitly. All initialization procedures are au-
tomatic.

5net.java.sip.communicator.util.dns.ParallelResolver

4.3.5 Twisted

With Twisted version 10.2, python-based applications
can directly use host names to create TCP-based con-
nections. However, the same does not apply to UDP;
the application has to manually resolve the host name
into an IP address before use.

With the exception of resolving of AAAA records from
the DNS, IPv6 support is essentially missing from
Twisted. Thus, mapped addresses and parallel connec-
tions over IPv4 and IPv6 remain unsupported due to lack
of proper IPv6 support. Some methods and classes in-
clude “4” suffix to hard code certain functions only to
IPv4 which can hinder IPv6 interoperability.

Introducing IPv6 source address selection to Twisted
would be relatively straightforward, assuming IPv6 sup-
port is eventually implemented. For example, Twisted
methods wrappers for connect() function input host
names. Therefore, the methods could be adapted to in-
clude a new optional argument to specify source address
preferences.

The twisted framework uses gethostbyname() but has also
its own implementation of DNS, both for the client and
server side. As IPv6 support is missing, the framework
cannot support parallel look ups.

The UDP multihoming issue is also present in Twisted.
We observed this by experimenting with a couple of
client and server UDP applications in the Twisted source
package.

TCP and UDP are quite interchangeable in Twisted
when the application uses the Endpoint class because it
provides abstracted read and write operations. However,
two discrepancies exists. First, Creator class is tainted
by TCP-specific naming conventions in its method con-
nectTCP(). Second, applications cannot read or write
UDP datagrams directly using host names but first have
to resolve them into IP addresses.

Twisted supports TLS and SSL in separate classes.
TLS/SSL can be plugged into an application with rela-
tive ease due to modularity and high-level abstraction of
the framework. The details of SSL/TLS are configurable
and Twisted provides defaults for applications that do
not need special configurations. With the exception of
seeding the PRNG, the rest of the details of TLS/SSL
initialization are handled automatically.

14

4.3.6 A Summary of the Framework Results

We summarize how the requirements were met by each
of the four frameworks in Table 3. Some of the require-
ments were unmet in all of the frameworks. For exam-
ple, all frameworks failed to support UDP-based mul-
tihoming (R3.2) and parallel IPv4/IPv6 connection ini-
tialization for clients (R3.3). Also, SSL/TLS initializa-
tion (R5.3) was not implemented correctly in all frame-
works. In total, 56 % of our requirements were com-
pletely met in all of the frameworks.

Req. ACE Boost::Asio Java.net Twisted
R1.1 X X (X)
R1.2 X X X
R1.3 X X X N/A
R2.1 X X X
R2.2
R3.1 X X X X
R3.2
R3.3
R4.1 X X (X)
R5.1 X X X X
R5.2 X X X X
R5.3 X (X) X (X)

Table 3: Summary of how the frameworks meet the re-
quirements

5 Related and Future Work

At least three other software-based approaches to ana-
lyze applications exist in the literature. Camara et al. [3]
developed software and models to verify certain errors
in applications using the Sockets API. Ammons et al. [1]
have investigated machine learning to reverse engineer
protocol specifications from source code based on the
Sockets API. Palix et al. [14] have automatized finding
of faults in the Linux kernel and conducted a longitudi-
nal study.

We did not focus on the development of automatized
software tools but rather on the discovery of a number
of novel improvements to applications and frameworks
using the Sockets API. While our findings could be fur-
ther automatized with the tools utilized by Camara, Am-
mons and Palix et al., we believe such an investigation
would be in the scope of another article.

Similarly to our endeavors with multihoming, Multiple
Interfaces working group in the IETF tackles the same

problem but in broader sense [2, 24]. Our work supple-
ments their work, as we explained a very specific multi-
homing problem with UDP, the extent of the problem in
Ubuntu Linux and the technical details how the problem
can be addressed by developers.

6 Conclusions

In this article, we showed empirical results based on
a statistical analysis of open-source network software.
Our aim was to understand how the Sockets APIs and its
extensions are used by network applications and frame-
works. We highlighted ten problems with security, IPv6
and configuration. In addition to describing the generic
technical solution, we also reported the extent of the
problems. As the most important finding, we discov-
ered that 28.6% of the C-based network applications in
Ubuntu are vulnerable to attacks because they fail to ini-
tialize OpenSSL properly.

We applied the findings with C-based applications to
four example frameworks based on the Sockets API.
Contrary to the C-based applications, we analyzed the
frameworks in a top-down fashion along generalized di-
mensions of end-host naming, multiplicity of names and
transports, name look up and security. Consequently, we
proposed 12 networking requirements that were com-
pletely met by a little over half of the frameworks in
total. For example, all four frameworks consistently
failed to support UDP-based multihoming and parallel
IPv4/IPv6 connection initialization for the clients. Also
the TLS/SSL initialization issue was present in some of
the frameworks. With the suggested technical solutions
for Linux, we argue that hand-held devices with multi-
access capabilities have improved support for UDP, the
end-user experience can be improved by reducing la-
tency in IPv6 environments and security is improved for
SSL/TLS in general.

7 Acknowledgments

We would like to thank Tao Wan for his initial work with
the topic. We appreciate the discussion with Dmitriy
Kuptsov, Antti Louko, Teemu Koponen, Antti Ylä-
Jääski, Jukka Nurminen, Andrey Lukyanenko, Boris
Nechaev, Zhonghong Ou, Cui Yong, Vern Paxon, Ste-
fan Götz and Suvi Koskinen around the topic. The au-
thors also express their gratitude to anonymous review-
ers for their comments. This work was supported by

15

grant numbers 139144 and 135230 from the Academy
of Finland.

References

[1] Glenn Ammons, Rastislav Bodík, and James R.
Larus. Mining specifications. In Proceedings of
the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’02,
pages 4–16, New York, NY, USA, 2002. ACM.

[2] M. Blanchet and P. Seite. Multiple Interfaces and
Provisioning Domains Problem Statement. RFC
6418 (Informational), November 2011.

[3] P. de la Cámara, M. M. Gallardo, P. Merino, and
D. Sanán. Model checking software with
well-defined apis: the socket case. In Proceedings
of the 10th international workshop on Formal
methods for industrial critical systems, FMICS
’05, pages 17–26, New York, NY, USA, 2005.
ACM.

[4] A. Ford, C. Raiciu, M. Handley, S. Barre, and
J. Iyengar. Architectural Guidelines for Multipath
TCP Development. RFC 6182 (Informational),
March 2011.

[5] R. Gilligan, S. Thomson, J. Bound, J. McCann,
and W. Stevens. Basic Socket Interface
Extensions for IPv6. RFC 3493 (Informational),
February 2003.

[6] R. Hinden and S. Deering. IP Version 6
Addressing Architecture. RFC 4291 (Draft
Standard), February 2006. Updated by RFCs
5952, 6052.

[7] C. Huitema. RFC 4380: Teredo: Tunneling IPv6
over UDP through Network Address Translations
(NATs), February 2006.

[8] M. Komu, M. Bagnulo, K. Slavov, and
S. Sugimoto. Sockets Application Program
Interface (API) for Multihoming Shim. RFC 6316
(Informational), July 2011.

[9] M. Komu and T. Henderson. Basic Socket
Interface Extensions for the Host Identity Protocol
(HIP). RFC 6317 (Experimental), July 2011.

[10] Craig Metz and Jun ichiro itojun Hagino.
IPv4-Mapped Addresses on the Wire Considered
Harmful, October 2003. Work in progress,
expired in Oct, 2003.

[11] Robert Moskowitz, Pekka Nikander, Petri Jokela,
and Thomas R. Henderson. RFC 5201: Host
Identity Protocol, April 2008.

[12] E. Nordmark and M. Bagnulo. Shim6: Level 3
Multihoming Shim Protocol for IPv6. RFC 5533
(Proposed Standard), June 2009.

[13] E. Nordmark, S. Chakrabarti, and J. Laganier.
IPv6 Socket API for Source Address Selection.
RFC 5014 (Informational), September 2007.

[14] Nicolas Palix, Gaël Thomas, Suman Saha,
Christophe Calvès, Julia L. Lawall, and Gilles
Muller. Faults in linux: ten years later. In Rajiv
Gupta and Todd C. Mowry, editors, ASPLOS,
pages 305–318. ACM, 2011.

[15] Eric Rescorla. SSL and TLS, Designing and
Building Secure Systems. Addison-Wesley, 2006.
Tenth printing.

[16] Michael Scharf and Alan Ford. MPTCP
Application Interface Considerations, November
2011. Work in progress, expires in June, 2012.

[17] Douglas C. Schmidt. The adaptive
communication environment: An object-oriented
network programming toolkit for developing
communication software. pages 214–225, 1993.

[18] P. Srisuresh and K. Egevang. Traditional IP
Network Address Translator (Traditional NAT).
RFC 3022 (Informational), January 2001.

[19] W. Stevens, M. Thomas, E. Nordmark, and
T. Jinmei. Advanced Sockets Application
Program Interface (API) for IPv6. RFC 3542
(Informational), May 2003.

[20] W. Richard Stevens, Bill Fenner, and Andrew M.
Rudoff. Unix Network Programming, Volume 1,
The Sockets Networking API. Addison-Wesley,
2004. Fourth printing.

[21] R. Stewart. RFC 4960: Stream Control
Transmission Protocol, September 2007.

16

[22] T.Dierks and E. Rescorla. RFC 5246: The
Transport Layer Security (TLS) Protocol Version
1.2, August 2008.

[23] Javier Ubillos, Mingwei Xu, Zhongxing Ming,
and Christian Vogt. Name Based Sockets,
September 2010. Work in progress, expires in
March 2011.

[24] M. Wasserman and P. Seite. Current Practices for
Multiple-Interface Hosts. RFC 6419
(Informational), November 2011.

[25] D. Wing and A. Yourtchenko. Happy Eyeballs:
Success with Dual-Stack Hosts. RFC 6555
(Proposed Standard), April 2012.

17

Publication II

Miika Komu, Sasu Tarkoma, Jaakko Kangasharju and Andrei Gurtov. Apply-

ing a Cryptographic Namespace to Applications. In Dynamic Interconnec-

tion of Networks Workshop (DIN’05), Proceedings of the 1st ACM Workshop

on Dynamic Interconnection of Networks (co-located with Mobicom 2005

Conference), Cologne, Germany, pp. 23-27, ISBN 1-59593-144-9, Septem-

ber 2005.

c© 2005 ACM.

Reprinted with permission.

123

Applying a Cryptographic Namespace to Applications

Miika Komu
Helsinki Institute for Information Technology

Advanced Research Unit
P.O. Box 9800

FIN-02015 HUT, Finland

miika@iki.fi

Sasu Tarkoma
Helsinki University of Technology

Telecommunications Software and Multimedia
Laboratory

P.O.Box 5400
FIN-02015 HUT

sasu.tarkoma@tml.hut.fi

Jaakko Kangasharju
Helsinki Institute for Information Technology

Advanced Research Unit
P.O. Box 9800

FIN-02015 HUT, Finland

jkangash@hiit.fi

Andrei Gurtov
Helsinki Institute for Information Technology

Advanced Research Unit
P.O. Box 9800

FIN-02015 HUT, Finland

gurtov@cs.helsinki.fi

ABSTRACT
The Host Identity Protocol (HIP) is a promising solution for
dynamic network interconnection. HIP introduces a name-
space based on cryptographically generated Host Identifiers.
In this paper, two different API variants for accessing the
namespace are described, namely the legacy and the native
APIs. Furthermore, we present our implementation expe-
rience on applying the APIs to a number of applications,
including FTP, telnet, and personal mobility. Well-known
problems of callbacks and referrals, i.e., passing the IP ad-
dress within application messages, are considered for FTP
in the context of HIP. We show that the callback problem is
solvable using the legacy API. The APIs are important for
easy transition to HIP-enabled networks. Our experimen-
tation with well-known network applications indicate that
porting applications to use the APIs is realistic.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—applications, protocol architecture; C.2.1 [Com-

puter-Communication Networks]: Network Architec-
ture and Design

General Terms
Design, Experimentation, Security, Standardization

Keywords
Host Identity Protocol, sockets API, referral, personal mo-
bility

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DIN’05, September 2, 2005, Cologne, Germany.
Copyright 2005 ACM 1-59593-144-9/05/0009 ...$5.00.

1. INTRODUCTION
The interconnection of mobile nodes, mobile networks,

and multi-homed hosts is a challenging task within the cur-
rent Internet architecture. The Host Identity Protocol (HIP)
being developed by the IETF [8] is a promising solution to
address these issues. The HIP layer is located between the
network and transport layers and provides a new crypto-
graphic addressing space for applications, where communi-
cation endpoints are identified using public cryptographic
keys instead of IP addresses. However, HIP by itself provides
no benefits unless there are applications using the protocol.
In this paper, we consider the important problems of accom-
modating legacy applications to run on top of HIP, and of
designing a native HIP API for new networking applications.

The fundamental idea behind HIP is to divide the address
of a network-addressable node to two parts: the identifier
and locator parts. The identifier part uniquely names the
host using a cryptographic namespace and the locator part
uniquely defines the topological location of the node in the
network.

The main benefits of the new HIP namespace are statis-
tically unique identifiers, separation of identifiers from their
topological location, better support for delegation and in-
termediaries, multi-homing/mobility support, and security
features such as authentication and confidentiality [8, 1, 15].
Recently, many systems based on globally unique flat name-
spaces have been proposed, including Unmanaged Internet
Protocol (UIP) [3], i3 [15], and Delegation Oriented Archi-
tecture (DOA) [1]. IPv6 addresses some of the concerns
with IPv4 and Network Address Translations (NATs), but
still couples the identity of the hosts with the location.

The introduction of a new namespace requires considera-
tion of two new architectural issues: how the new namespace
is used in packets, and how the identifiers are resolved and
distributed. In addition, mechanisms that allow applica-
tions to leverage the properties of the namespace are needed.
We focus on the applications and present two APIs, legacy
API [4] and native HIP API [6]. The APIs are all included
in our HIP for Linux implementation [2].

The rest of the paper is organized as follows. A brief

overview of HIP architecture is given in Section 2. In Sec-
tion 3, the legacy and native APIs for HIP are described. In
Section 4, we illustrate the use of HIP APIs for FTP, Telnet,
and personal mobility applications. Section 5 concludes the
paper.

2. THE HIP NAMESPACE
HIP [8] introduces a new Host Identifier (HI) namespace

for the Internet. The HIs are disjoint from the IPv4 and
IPv6 namespaces in order to provide location independent
identification of upper-layer endpoints. By decoupling the
network-layer identifiers from the upper-layer identifiers, the
HIP architecture provides a sound foundation on which to
build mobility and multi-homing support. The upper layers
have stable endpoint identifiers, but network-layer addresses
can change dynamically.

The endpoints are identified using asymmetric cryptogra-
phy. A HI is the public key component of an asymmetric
key pair. The private key is owned by the endpoint, making
impersonating another endpoint very difficult. HIP uses the
HIs as Transport Layer Identifiers (TLIs). The locators, i.e.,
IP addresses, are used only in the network layer. There is
a one-to-many binding between a HI and the corresponding
locators [11]. As the HI is essentially a variable-sized pub-
lic key, it is difficult to use in datagram headers. Further,
long identifiers are difficult to support in the sockets API
because it imposes a limit of 255 bytes to socket address
structures. To address these problems, the HIP architecture
also includes fixed-size representations of the HI. A Host
Identity Tag (HIT) is a 128-bit long hash of the HI, and a
Local Scope Identifier (LSI) is a 32-bit representation of the
HIT.

In the traditional TCP/IP model, connection associations
in the application layer are uniquely distinguished by the
source IP address, destination IP address, source port, des-
tination port, and transport protocol type. HIP changes
this model by using HITs in the place of IP addresses. The
HIP model is further expanded in the native HIP API model
by using Endpoint Descriptors (EDs) instead of HITs. Now,
the application layer uses source ED, destination ED, source
port, destination port, and transport protocol type to distin-
guish between different connection associations. The name-
space model used in the native HIP API is shown in Figure 1.

Transport Layer

HIP Layer

Network Layer

HI, port

HI

IP address

User Interface

Application Layer

Host name

ED, port and
protocol type

Figure 1: The HIP namespace model

The ED is used for hiding the representation of endpoints
from applications in the native HIP API. It acts as a handle

or an alias to the corresponding HI on the host. It is an
integer having only local significance, similar to a file or
socket descriptor. This kind of identifier with only local
significance appears also in other namespace models, such
as in OCALA [5].

The difference between the application and transport layer
identifiers is that the transport layer uses HIs instead of
EDs. The TLI is named with source HI, destination HI,
source port, and destination port at the transport layer.
Correspondingly, the HIP layer uses HIs as identifiers. The
HIP Security Associations (SAs) are based on source HI and
destination HI pairs. The network layer uses IP addresses,
i.e., locators, for routing. The network layer interacts with
the HIP layer to exchange information about changes in the
addresses of local interfaces and peers.

The native HIP API socket bindings are visualized in Fig-
ure 2. A HIP socket is associated with one source and one
destination ED, along with their port numbers and the pro-
tocol type. Multiple EDs and ports can be associated with
a single HI. Further, the source HI is associated with a set
of network interfaces at the local host. The destination HI,
in turn, is associated with a set of destination addresses of
the peer.

Dynamic Binding

*

*

1

1

HIP
socket

Src ED

and port
Dst ED

and port
1* * *

1* * * Dst Addr

Src IfaceSrc HI

Dst HI

Figure 2: Native HIP API socket bindings

We believe that using EDs instead of HITs at the ap-
plication layer has two useful properties. First, it simplifies
implementing opportunistic base exchange, and second, EDs
can be seen as a higher-layer concept to separate application-
layer identifiers from those of lower layers.

In opportunistic base exchange the initiator does not know
the responder’s HIT, but only its IP address. Trying to im-
plement this with the legacy API using the standard sockets
API forces the application to associate its socket with the
responder’s IP address instead of its HIT. This increases
the complexity of the HIP implementation, since a mapping
from IPs to HITs is now needed, and it may not function
reliably when IP addresses change due to mobility. In the
native HIP API, however, the application binds to an ED.
The HIP implementation can then transparently associate
this ED with the responder’s HIT that is learned later dur-
ing the base exchange. Since EDs are already used in the
native HIP API, supporting opportunistic mode does not
increase the complexity of the HIP implementation.

It also seems to us that the new abstraction layer pro-
vided by the EDs may have some synergy with service iden-
tifiers [1] or session layer identifiers [14]. However, we are
currently investigating this idea, and will not consider it
further in this paper.

3. HIP API
In this section, we describe two APIs for applications to

access the HIP namespace. The APIs are described in the C
programming language, although Java is also supported by
our implementation. First, we present the legacy API which
is intended as an easy migration path towards HIP-enabled
applications. Next, we present the native HIP API that
allows applications to fully utilize the new namespace and
protocol. Finally, we discuss problems related to referrals.

3.1 Legacy API
Network applications typically use host names to address

peers. Host names have to be resolved to IPv6 addresses
from the Domain Name System (DNS) in the resolver li-
brary before network connections can be established with
peers. In the legacy API, the resolver routine has been mod-
ified to prefer HITs as the result of DNS queries instead of
IPv6 addresses. Otherwise, the legacy API appears like the
standard sockets API to the application.

We modified the resolver library to support HIP in two
ways. In transparent mode, the DNS queries resolve silently
to HITs instead of IPv6 addresses. For backwards compat-
ibility, the resolver returns IP addresses if no HITs were
found. The greatest benefit of the transparent mode is that
it requires no changes in the application. However, a draw-
back of the transparent mode is that the resolver is not guar-
anteed to always return HITs. To address this shortcoming,
applications can use the resolver in explicit mode by pass-
ing a flag explicitly to the resolver. This flag enforces the
use of HIP by making the resolver return only HITs to the
application. Effectively, this means that connections will be
established using HIP or not at all. This way, HIP can be
used with minimal changes in HIP-aware applications.

Example code using the legacy API is shown in Figure 3.
The only modification from a standard socket application is
the use of a flag flag to enable the explicit mode.

struct addrinfo hints, *res, *try;

char *hello = "hello";

int err, int bytes, sock;

memset(hints, 0, sizeof(hints));

hints.ai_flags = AI_HIP;

hints.ai_family = AF_INET6;

hints.ai_socktype = SOCK_STREAM;

err = getaddrinfo("www.host.org", "echo",

&hints, &res);

sock = socket(res->ai_family,

res->ai_socktype,

res->protocol);

for (try = res; try; try = try->ai_next)

err = connect(sock, try->ai_addr,

try->ai_addrlen);

bytes = send(sock, hello, strlen(hello), 0);

bytes = recv(sock, hello, strlen(hello), 0);

err = close(sock);

err = freeaddrinfo(res);

Figure 3: A “Hello, world” client using the legacy

API.

3.2 Native HIP API
The legacy API requires only minor changes in applica-

tions, and therefore it cannot utilize all features of a HIP-
enabled networking stack. Applications requiring more con-
trol over the HIP layer can use the native HIP API [6]. The
most significant difference between the legacy and the native
APIs is that the native HIP API can use public-key identi-
ties in the userspace sockets API. A direct benefit of this is
that the users can provide their own public key identifiers
to the networking stack. As a result, the identities are not
bound to just hosts; they can be bound to users, processes,
or groups. For instance, process migration systems [7] may
benefit from this as the HI can be moved along with the
process. In addition, if DNS is used to store public keys
instead of HITs [10], the explicit public key handling in the
native HIP API should become useful.

We propose a PF HIP protocol family to be available in
HIP-enabled network stacks. HIP-aware applications use
the existing transport layer sockets API and specify this
new protocol family when creating sockets. By creating a
HIP-enabled socket, an application can detect whether HIP
is supported on the local host. Similarly, an application can
detect HIP support in a peer host by resolving the EDs of
the peer. If the peer does not support HIP, the resolver
returns an empty set.

The syntax of the native HIP API is similar to the legacy
API. The crucial differences are the use of PF HIP instead
of AF INET6, and a new socket structure for EDs. The re-
solver function is used in a similar way as the legacy API
resolver [6]. An example use of the native HIP API is shown
in Figure 4. The example uses an application-specified iden-
tifier from the file /home/mk/hip host dsa key.

int sockfd, err, family = PF_HIP,

type = SOCK_STREAM;

char *user_priv_key = "/home/mk/hip_host_dsa_key";

struct endpoint *endpoint;

struct sockaddr_ed my_ed;

struct endpointinfo hints, *res = NULL;

err = load_hip_endpoint_pem(user_priv_key,

&endpoint);

err = setmyeid(&my_ed, "", endpoint, NULL);

sockfd = socket(family, type, 0);

err = bind(sockfd, (struct sockaddr *) &my_ed,

sizeof(my_ed));

memset(&hints, 0, sizeof(&hints));

hints.ei_socktype = type;

hints.ei_family = family;

err = getendpointinfo("www.host.org", "echo",

&hints, &res);

/* connect, send and recv as in Figure 3 */

Figure 4: A “Hello, world” client with application-

specified identifiers in the native HIP API.

An application can control the HIP layer better using the
native HIP API than the legacy API. For example, the ap-
plication can set the base exchange puzzle to be more dif-
ficult for a specific server port number, request for higher
SA lifetimes, use smaller (and less secure) key lengths, or

even specify its own HIs. Quality of Service (QoS) related
attributes can also be accessed through the native HIP API
to allow the simultaneous use of multiple IP flows. This en-
ables applications to benefit from soft-handover strategies,
or to select a data path depending on the available QoS.
For example, the application can be notified when a LAN
interface of the host is activated, so that the application can
use it for data traffic instead of a slow WLAN link.

3.3 The Referral Problem
HIP introduces a new address space for the transport

layer. Basically, the address space is flat although it is pos-
sible to use type 2 [8, 10] HITs that contain a domain prefix.
Using the prefix, HITs can be resolved to IP addresses from
the DNS. However, the problem with this approach is that
it has some security implications due to the increased prob-
ability of HIT collisions. As a consequence, we may need to
have full-length type 1 HITs [8, 10] in the future.

However, this causes problems for applications that need
a remote application to initiate a connection. Currently
they communicate either their own IP address (callback) or
that of a third party (referral) [12]. The remote applica-
tion will later connect to the communicated address. Using
the legacy API with such applications would replace these
IP addresses with HITs. However, since HITs cannot be
resolved to IP addresses in the current DNS infrastructure,
the remote application cannot typically initiate the required
connection.

There are at least three ways to solve this problem. One
way is to modify the DNS infrastructure to support type 2
HIT lookup. The second way is to use an overlay based on
a flat namespace such as Internet Indirection Infrastructure
(i3) [17] to support resolving of HITs. Third, the overlay
can also be used for packet routing, at least for the initial
HIP signaling [9], but this is out of the scope of this paper.

4. HIP APPLICATIONS
In this section, we present three HIP-enabled applications.

We begin with an FTP application, which has been labeled
by the community as challenging for HIP. Then, we examine
a Telnet application that was ported to use the native HIP
API. Finally, we describe an application of personal mobility
with HIP.

4.1 FTP and Referrals
File Transfer Protocol (FTP) [13] uses two separate chan-

nels (TCP connections) for communication, one for control
and one for data. The data channel can be initiated in two
ways. In a passive mode, the server passes its IP address
and port number as a callback to the client using the con-
trol channel. Then the client initiates a data channel to the
server based on the IP address and port number given by
the server. In an active mode, it is the vice versa: the server
initiates the data channel to the IP address and port given
by the client.

The FTP way of passing addresses as callbacks can be
considered problematic when HIP is used because HITs are
used instead of IP addresses. The crux of the problem is that
the application may not be able to resolve a given HIT to
a routable IP address. We decided to experiment with this
problem using the legacy API with an initial expectation of
failure.

Our callback experiment used IPv6-enabled FTP client

and server software (lftp version 3.1.3 and proftpd version
1.2.10). Both the client and the server used the legacy API,
thus requiring no modifications. We carried out a simple test
where the client contacted the HIT of the server and down-
loaded a file. Surprisingly, both modes, active and passive,
worked properly. We also experimented with a mobility han-
dover during file download by changing the currently active
address of the client. This caused only a relatively small
delay during the file download.

The reason why the callback worked in the case of FTP is
that once the client (initiator) and server (responder) have
established a security association, they are aware of each
other’s HIT-to-IP mappings. The mapping from the HIT to
IP address(es) is not lost because it is valid at least for the
lifetime of the IPsec SA.

However, the callbacks are only a part of the problem. In
the FTP case, it is possible to use referrals instead of call-
backs, but fortunately this feature is rarely used. The refer-
ral problem occurs when the client creates a new data chan-
nel using the FTP protocol to server A, but redirects it to
another server B. As the redirection is based on a HIT, server
B must resolve the HIT to an IP address, which requires sup-
port from the infrastructure. We already described three
general solutions to this problem in Section 3.3. Addition-
ally, it would also be possible to extend the FTP protocol
to use either FQDNs or HITs and IP addresses together.

4.2 Telnet
We ported an IPv6-enabled Telnet client and daemon to

use the native HIP API. We configured the native HIP API
into the code as a compile-time option. The porting process
itself was quite straightforward. As the native HIP API
resolver name and related data structure are named differ-
ently from their IP-based API correspondents, the porting
process consisted mainly of search and replace operations in
the source code. The API names are different to emphasize
the introduction of the new namespace in the resolver but
the syntax is almost identical [6].

4.3 Personal Mobility
Personal mobility and device personalization are becom-

ing an important part of applications and mass-market de-
vices. Personal mobility occurs when the user changes de-
vices. Personalization is needed to change the user experi-
ence on a new device to meet the user’s expectations. Al-
most all recent mobile phones support personalization of the
device to accommodate the user’s preferences, for example
in call settings, buddy-lists, and user interface appearance.

A HI can be used to support personal mobility and de-
vice personalization. This is accomplished by associating
the HI with a user and using a smartcard or a USB stick
to store the HI. Personal mobility takes place when the user
inserts the identity storage device containing the HI into a
terminal device. The HI can then be used to initiate a HIP
connection, and to support mobility and multi-homing. The
HI may also be used to locate, download, and synchronize
data needed for device personalization, such as device, user
interface, and preference profiles. Since the HI is a public
cryptographic key, it allows authentication of the client as
well as confidentiality of the personalization data.

We experimented with a scenario in which the HI is stored
on a USB memory stick and can be moved between differ-
ent machines. The insertion of the USB stick is detected

automatically. After detection, the HI is loaded to the HIP
kernel module, and then used by applications. We demon-
strated HIP-based connections in personal mobility for file
synchronization and for streaming audio playback.

In our scenario, the USB stick only contains the HI, and
the connections are not persistent. In the future we also plan
to store data related to the session state on the stick so that
connections can be restored at the new location. In addition,
we envision that the USB stick can be replaced with a smart
card that can create and verify signatures directly. This way,
users can use their personal identities even on untrusted
hosts (for example in Internet cafes) without compromising
their private keys. Further, users can prevent other people
from tracking their personal identifier and location by using
either short-lived HIs or “blinded” HITs [16].

5. CONCLUSION
In this paper we have presented the legacy and the native

APIs of our Linux-based HIP implementation. The legacy
API does not necessarily require changes to applications.
The native API requires modifications, but allows applica-
tions to provide their own public key identities. The cryp-
tographic namespace is useful for applications and we dis-
cussed the implications for three example applications: FTP,
Telnet, and personal mobility and personalization. Initially,
we expected HIP-enabled FTP to be hindered by the call-
back problem, but our analysis and experimentation showed
that callbacks are not an issue. We observed that it was rel-
atively straightforward to port a Telnet utility to use the
native HIP API. As an example of the benefits of the na-
tive HIP API, we discussed personal mobility and device
personalization using Host Identifiers and USB sticks.

As a conclusion, we envisage that simple network applica-
tions use the legacy API in a transparent fashion, and more
advanced applications utilize the new namespace using the
native HIP API. We expect that the migration to HIP may
require changes in some applications, but our experiments
with basic networking utilities and the legacy API indicate
that the introduction of the new namespace is realistic.

6. ACKNOWLEDGMENTS
We thank Jukka Ylitalo, Jeff Ahrenholz, Teemu Koponen,

Abhinav Pathak and Thomas Henderson for their comments
on the the paper. Niklas Karlsson developed a small feature
to the HIP module that was required for the FTP daemon
to work (binding to a HIT using the legacy API). We also
thank the anonymous reviewers for their helpful comments.

7. REFERENCES
[1] H. Balakrishnan, K. Lakshminarayanan,

S. Ratnasamy, S. Shenker, I. Stoica, and M. Walfish.
A Layered Naming Architecture for the Internet. In
Proc. of ACM SIGCOMM’04, pages 343–352, Aug.
2004.

[2] C. Candolin, M. Komu, M. Kousa, and J. Lundberg.
An implementation of HIP for Linux. In Proc. of the
Linux Symposium, July 2003.

[3] B. Ford. Unmanaged Internet Protocol: taming the
edge network management crisis. ACM Computer
Communication Review, 34(1):93–98, 2004.

[4] T. R. Henderson. Using HIP with legacy applications:
draft-henderson-hip-applications-01, July 2005. Work
in progress. Expires in January 19, 2006.

[5] J. Kannan, A. Kubota, K. Lakshminarayanan,
I. Stoica, and K. Wehrle. Supporting legacy
applications over i3. Technical Report
UCB/CSD-04-1342, University of California at
Berkeley, May 2004.

[6] M. Komu. Native Application Programming Interfaces
for the Host Identity Protocol:
draft-mkomu-hip-native-api-00. Internet Engineering
Task Force, Sept. 2004. Work in progress. Expires
August, 2005.

[7] T. Koponen, A. Gurtov, and P. Nikander. Application
mobility with Host Identity Protocol. In Proc. of
NDSS Wireless and Security Workshop, San Diego,
CA, USA, Feb. 2005. Internet Society.

[8] R. Moskowitz, P. Nikander, P. Jokela, and
T. Henderson. Host Identity Protocol:
draft-ietf-hip-base-03, June. 2005. Work in progress.
Expires in December, 2005.

[9] P. Nikander, J. Arkko, and B. Ohlman. Host Identity
Indirection Infrastructure (Hi3). In Proc. of The
Second Swedish National Computer Networking
Workshop 2004 (SNCNW2004), Karlstad, Sweden,
Nov. 2004.

[10] P. Nikander and J. Laganier. Host Identity Protocol
(HIP) Domain Name System (DNS) extensions:
draft-ietf-hip-dns-01.txt, Feb. 2005. Work in progress.
Expires in August, 2005.

[11] P. Nikander, J. Ylitalo, and J. Wall. Integrating
Security, Mobility, and Multi-homing in a HIP way. In
Proc. of Network and Distributed Systems Security
Symposium (NDSS’03), San Diego, CA, USA, Feb.
2003. Internet Society.

[12] E. Nordmark. Multi6 Application Referral Issues.
Internet Engineering Task Force, Jan. 2005. Internet
draft, work in progress.

[13] J. Postel and J. Reynolds. RFC959: File Transfer
Protocol (FTP). Internet Engineering Task Force, Oct.
1985.

[14] M. A. C. Snoeren. A Session-based Architecture for
Internet Mobility. PhD thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering
and Computer Science, Feb. 2003.

[15] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In Proc.
of ACM SIGCOMM’02, Pittsburgh, PA, USA, Aug.
2002.

[16] J. Ylitalo and P. Nikander. BLIND: A complete
identity protection framework for end-points. In Proc.
of the Twelfth International Workshop on Security
Protocols, Apr. 2004.

[17] S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker.
Host Mobility using an Internet Indirection
Infrastructure. Technical report, University of
California at Berkeley, 2002.

Publication III

Miika Komu, Sasu Tarkoma and Andrey Lukyanenko. Mitigation of Unso-

licited Traffic Across Domains with Host Identities and Puzzles. In 15th

Nordic Conference on Secure IT Systems (NordSec 2010), Springer Lecture

Notes in Computer Science, Volume 7127, pp. 33-48, ISBN 978-3-642-27936-

2, Espoo, Finland, October 2010.

c© 2010 Springer 2012.

Reprinted with permission.

131

Mitigation of Unsolicited Traffic across Domains

with Host Identities and Puzzles

Miika Komu1, Sasu Tarkoma2, and Andrey Lukyanenko1

1 Aalto University
2 University of Helsinki

Abstract. In this paper, we present a general host identity-based tech-
nique for mitigating unsolicited traffic across different domains. We pro-
pose to tackle unwanted traffic by using a cross-layer technique based
on the Host Identity Protocol (HIP). HIP authenticates traffic between
two communicating end-points and its computational puzzle introduces a
cost to misbehaving hosts. We present a theoretical framework for inves-
tigating scalability and effectiveness of the proposal, and also describe
practical experiences with a HIP implementation. We focus on email
spam prevention as our use case and how to integrate HIP into SMTP
server software. The analytical investigation indicates that this mecha-
nism may be used to effectively throttle spam by selecting a reasonably
complex puzzle.

1 Introduction

One challenge with the current Internet architecture is that it costs very little to
send packets. Indeed, many proposals attempt to introduce a cost to unwanted
messages and sessions in order to cripple spammers’ and malicious entities’ abil-
ity to send unsolicited traffic. From the network administration viewpoint, spam
and DoS traffic comes in two flavors, inbound and outbound traffic. Inbound
traffic originates from a foreign network and outbound traffic is sent to a for-
eign network. Typically, spam and packet floods originate from networks infested
with zombie machines. A zombie machine is a host that has been taken over by
spammers or persons working for spammers, e.g., using Trojans or viruses.

We address the problem of unsolicited network traffic. We use two properties
unique to the Host Identity Protocol (HIP) protocol: First, hosts are authen-
ticated with their public keys which can be used for identifying well-behaving
SMTP servers. Second, a computational puzzle introduces a cost to misbehav-
ing hosts. Our approach has a cross-layer nature because a lower-layer security
protocol is used to the benefit of higher-layer protocols.

2 Host Identity Protocol

The Host Identity Protocol (HIP) [9] addresses mobility, multi-homing, and se-
curity issues in the current Internet architecture. HIP requires a new layer in

T. Aura, K. Järvinen, and K. Nyberg (Eds.): NordSec 2010, LNCS 7127, pp. 33–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 M. Komu, S. Tarkoma, and A. Lukyanenko

the networking stack, logically located between the network and transport layers,
and provides a new, cryptographic namespace. HIP is based on identifier-locator
split which separates the identifier and locator of an Internet host. The identifier
uniquely names the host in a cryptographic namespace, and the locator defines
a topological location of the node. Communication end points are identified us-
ing public cryptographic keys instead of IP addresses. The public keys used for
HIP are called Host Identifiers (HIs) and each host generates at least one HI for
itself.

The HIs can be published as separate HIP-specific records in the DNS [11].
Legacy applications can use HIP transparently without any changes. Typically,
the application calls the system resolver to query the DNS to map the host
name to its corresponding address. If a HIP record for the host name does
not exist, the resolver returns a routable IPv4 or IPv6 address. Otherwise, the
resolver returns a Host Identifier fitted into an IPv4 or IPv6 address. Local-
Scope Identifier (LSI) is a virtual IPv4 address assigned locally by the host and
it refers to the corresponding HI. Host Identity Tag (HIT) is an IPv6 address
derived directly from the HI by hashing and concatenation. An LSI is valid only
in the local context of the host whereas a HIT is statistically globally unique.

When an application uses HIP-based identifiers for transport-layer communi-
cations, the underlying HIP layer is invoked to authenticate the communication
end-points. This process is called the base exchange, during which the end points
authenticate to each other using their public keys. The host starting the base
exchange, the initiator, is typically a client, and the other host, the responder, is
typically a server. During the base exchange, the initiator has to use a number
of CPU cycles to solve a computational puzzle. The responder can increase the
computational difficulty of the puzzle to throttle new incoming HIP sessions.
Upon successful completion, both end-hosts create a session state called HIP
association.

The base exchange negotiates an end-to-end tunnel to encapsulate the con-
secutive transport-layer traffic between the two communicating end-hosts. The
tunnel is required because routers would otherwise discard traffic using virtual,
non-routable identifiers. Optionally, the tunnel also protects transport-layer traf-
fic using a shared key generated during the base exchange. By default, the tunnel
is based on IPsec [7] but S-RTP [14] can be used as well. It should be noted that
a single tunnel can encompass multiple transport-layer connections.

With HIP, transport-layer connections become more resilient against IP ad-
dress changes because the application and transport layers are bound to the
location-independent virtual identifiers, HITs or LSIs. The HIP layer handles
IP-address changes transparently from the upper layer using the UPDATE pro-
cedure [10]. In the first step of the procedure, the end host sends all of its locators
to its connected peers. Then, the peers initiate so called return routability test
to protect against packet-replay attacks, i.e., to make sure that the peer locator
is correct. In the test, each node sends a nonce addressed to each of the received
peer locators. The peer completes the test by signing each nonce and echoing

Mitigation of Unsolicited Traffic across Domains 35

it back to the corresponding peer. Only after the routability test is successfully
completed, the peer can start using the locator for HIP-related communications.

HIP sessions can be closed using the CLOSE [9] mechanism. It is consist of
two packets, in which one of the peer sends a CLOSE message to the other,
which then acknowledges the operation using CLOSE-ACK. After this, all state
is removed and the tunnel is torn down on both sides.

HIP employs rendezvous servers [5] to address the double jump problem. This
occurs when two connected HIP hosts lose contact with each other when they are
relocated simultaneously to new networks. The rendezvous server has a stable IP
address and offers a stable contact point for the end hosts to reach each other.

The computational puzzles of HIP [1] play a major role in this paper and
have been investigated by others as well. Beal et al. [3] developed a mathemati-
cal model to evaluate the usefulness of the HIP puzzle under steady-state DDoS
attacks. They also stated that the difficulty of the DoS-protection puzzle should
not be too high because otherwise an attacker can just choose a cheaper method
such as simple flooding of the network. Tritilanunt et al. [13] explored HIP puz-
zles further with multiple adversary models and variable difficulties. They also
noticed that solving of HIP puzzles can be distributed and a non-distributable
puzzle algorithm would provide more resilience against DDoS. Our work differs
from Beal et al. and Tritilanunt et al. because our use case is spam rather than
DDoS and our approach is based on cross-layer integration.

3 System Model

The basic idea is to assign each node in the network with an identity based on a
public key. The hosts may generate their private keys by themselves, or a third
party can assign them. Computational puzzles are a well-known technique for
spam prevention [4,2,6] but are typically used on a per message basis. In our
case, puzzles are applied to each pair of Host Identifiers. The difficulty of the
puzzle is varied based on the amount of unwanted traffic encountered.

Our example use case for the technique is spam prevention. Typical spam
prevention techniques are applied in a sequence starting from black, white or gray
listing techniques and sender identification, and ending in content filtering. Our
approach involves a similar sequence of spam testing but relies on the identity
of the sender rather than its IP address.

3.1 Basic Architecture for Spam Mitigation

In the email systems deployed in the Internet, there are outbound email servers
which are used for sending email using SMTP. Typically, the users access them
either directly or indirectly with a web-based email client. Usually users are
authenticated to these services with user names and passwords. In many cases,
direct access to outbound SMTP servers is restricted to the local network as a
countermeasure against spam. However, spam is still a nuisance and there are
networks which still allow sending of spam. In this paper, we use the term spam

36 M. Komu, S. Tarkoma, and A. Lukyanenko

relay for a malign or compromised outbound email server that allows sending
spam, and the term legitimate relay for a well-behaving outbound email server.

Correspondingly, inbound email servers process incoming emails arriving from
outbound emails servers. Users access these servers either indirectly via web in-
terfaces or directly with protocols such as POP or IMAP. Typically, the inbound
email server tags or drops spam messages and also the email client of the user
filters spam messages.

Our idea in a nutshell is to require a HIP session with an SMTP server before
it will deliver any email. The sender has to solve a computational puzzle from
the server to establish the session. If the sender sends spam, the server ends the
HIP session after a certain spam threshold is met. To continue sending spam, the
sender has to create a new session, but this time it will receive a more difficult
puzzle from the server.

The proposed architecture follows the existing SMTP architecture but requires
some changes. First, the inbound and outbound SMTP servers have to be HIP
capable. Second, we assume the spam filter of the inbound server is modified
to control the puzzle difficulty. Third, we assume the inbound SMTP servers
publish their Host Identifiers in the DNS.

3.2 Deployment Considerations

A practical limitation in our approach is that HIP itself is not widely deployed.
Even though we compare the HIP-based approach to the current situation later
in this paper, the benefits of our design can be harnessed to their full extent only
when HIP, or a similar protocol, has been deployed more widely in the Internet.
Alternatively, our design could be applied to some other system with built-in
HIP support such as HIP-enabled P2P-SIP [8].

We assume that Host Identities are published in the DNS which requires some
additional configuration of the DNS and also SMTP servers. However, based on
our operational experience with HIP, this can be accomplished in a backward-
compatible way and also deployed incrementally. First, the DNS records do not
interfere with HIP-incapable legacy hosts because the records are new records
and thus not utilized by the legacy hosts at all. Second, bind, a popular DNS
server software, does not require any modifications to its sources in order to
support DNS records for HIP. Third, SMTP servers can utilize a local DNS
proxy [12] to support transparent lookup of HIP records from the DNS.

3.3 Pushing Puzzles to Spam Relays

We considered two implementation alternatives for pushing puzzle computation
cost to spam relays. In the first alternative, the UPDATE messages could be
used to request a solution to a new puzzle. However, this is unsupported by
the current HIP standards at the moment. In the second alternative, which
was chosen for the implementation, inbound servers emulate puzzle renewal by
terminating the underlying HIP session. The termination is necessary because

Mitigation of Unsolicited Traffic across Domains 37

current HIP specifications allow puzzles only in the initial handshake. When the
spam relay reconnects using HIP, a more difficult puzzle will be issued by the
server.

3.4 Re-generating a Host Identity

One obvious way to circumvent the proposed mechanism is to change to a new
Host Identity after the server closes the connection and increases the puzzle
difficulty. Fortunately, creating Host Identities is comparable in cost to solving
puzzles, which can discourage rapid identity changes. In addition, non-zero puz-
zle computation time in the initial session further discourages creation of new
identities.

3.5 Switching Identities

It is reasonable to expect that a server relaying spam is able to generate new host
identities. Let CK denote a key-pair generation time and CN the cost of making
the public key and the corresponding IP address available in a lookup service.
We expect a spam relay to reuse its current identity as long as the following
equation holds:

Cj < CK + CN + C0, (1)

where Cj is the puzzle computation time of the jth connection attempt. In other
words, the spam relay continuously evaluates whether or not to switch to a new
identity. If the next puzzle cost is greater than the initial cost, the spam relay
has motivation to switch the identity. We note that the spam relay may devise
an optimal strategy if the cost distribution is known.

When the puzzle cost is static, there is no incentive for the spam relay to
change its identity unless blacklisted because the cost would be greater due
to the CK and CN terms. For a dynamic cost, the spam relay is expected to
change identities when the cost of a new identity and a new connection is less
than maintaining the current identity and existing connection. For a DNS-based
solution, the CN term has a high value because DNS updates are slow to take
effect.

Our proposed approach addresses identity-switching attacks using three basic
mechanisms. First, a node must authenticate itself. This means that the node
must be able to verify its identity using the corresponding private key. This does
not prevent the node from using multiple identities or changing its identity, but
ensures that the key pair exists. Second, a node must solve a computational
puzzle before any messages are transported.

Third, a level of control is introduced by the logically centralized lookup
service. The DNS maps host names to identities and IP addresses. A node must
have a record in the lookup service. The limitation of this approach that control
is introduced after something bad (e.g. spam) has already happened. The bad
reputation of malicious nodes can be spread with, for example, DNSBL lookups
performed by SMTP servers.

38 M. Komu, S. Tarkoma, and A. Lukyanenko

Nevertheless, identity switching could used to reduce the proposed system
and, therefore, we have taken it into account in the cost model analysis of the
next section.

4 Cost Model

In this section, we present an analytical cost model for the proposed identity-
based unsolicited traffic prevention mechanism. We analyze the performance of
the proposed mechanism when a number of legitimate senders and spam relays
send email to an inbound SMTP server. It should be noted that our model
excludes puzzle delegation in the case of multiple consecutive relays because it
is not advocated by the HIP specifications.

4.1 Preliminaries

Let us consider a set of NL legitimate email relays and NS spam relays. Each
legitimate relay sends messages at the rate of λL messages per second and each
spam relay at λS . We assume that the inbound email server has a spam filtering
component. It has a false negative of probability α, which refers to undetected
spam. Thus, (1−α) gives the probability for detecting a spam message. The filter
has also a false positive of probability β, which denotes good emails classified
as spam. Even though the inbound server could reject or contain the spam, we
assume the server just tags the message as spam and passes it forward.

An inbound SMTP server has a spam threshold κ given as the number of
forwarded spam messages before it closes the corresponding HIP session. After
the session is closed, the outbound email relay has to reopen it. Let the number
of reopened sessions be ξ in case of spam relays, and η in case of legitimate
email relays. The base exchange has an associated processing cost for the SMTP
source, TBE , given in seconds. This processing cost includes also the time spent
in solving the puzzle. Let TM denote the forwarding cost of a message. The finite
time interval T , for which we inspect the system, is expressed in seconds.

4.2 Cost Model

To demonstrate scalability, we derive the equation for the load of the inbound
SMTP server with and without HIP. The server load is determined by the number
of HIP sessions at the server and the number of email messages forwarded.
Without HIP, the email processing cost in seconds at the server is

RN = T · TM · (NL · λL +NS · λS). (2)

In case of HIP, let us define the accumulated puzzle computation time function
G(ξ) =

∑ξ
i=0 Ci. First, we consider the case with constant puzzle computation

time that is independent of number of session resets, i.e. C1 = C2 = . . . CN =
TBE, and G(ξ) = ξ · TBE .

Mitigation of Unsolicited Traffic across Domains 39

C1 C C C2 3 40 T

1st puzzle 2 nd puzzle
computed

Mail sending time
until spam threshold

puzzle computation timeth4
comp. started

Fig. 1. Division of system inspection time (T) into puzzle re-computation and mail
delivery stages with different puzzle computation times ci, where i is the number of
session resets. All Ci = TBE if the puzzle computation time is constant.

Next, we derive the number of HIP sessions due to session resets caused by
spam under the condition of identical puzzle computation time. The following
equation presents the number of session resets for a single spam relay:

ξ =
(T − TBE · ξ)λS(1− α)

κ
(3)

From equation 3, we can deduce that

ξ =
T · λS · (1 − α)

κ+ λS · (1 − α) · TBE
. (4)

The equation for the number of HIP sessions η needed by the legitimate SMTP
relays is similar to equation 4, but the false positive rate β is used instead of
(1−α), and correspondingly λL is used instead of λS . We assume that legitimate
relays do not send significant amount of spam so that only false positives need
to be considered. The cost to a paying customer is given by η, and ξ is the cost
to a spam relay. Given a small false positive probability, η is small. Therefore,
the mechanism is not harmful to paying customers.

Next, we derive the equation describing the HIP load of the inbound server
RH consisting of both legitimate and spam messages:

RH = NL · (η · TBE + T · λL · TM) +NS · (ξ · TBE + TS · λS · TM), (5)

The equation can be simplified by substituting the total time used for sending
spam messages TS with T − TBE · ξ and by applying equation 2:

RH = RN − TM · TBE · (λS ·NS · ξ) + TBE · (NL · η +NS · ξ) (6)

We assume β is small and, therefore, we used T instead of T − TBE · η (with
η denoting the number of session resets for a legitimate host). To evaluate the
effectiveness of the HIP-based solution against a solution without HIP, we define
ratio ϕ as:

ϕ =
RH

RN
. (7)

Now, consider the case when puzzle computation time is not constant, but rather
a function of the number of session attempts. This has to be reflected in equa-
tion 4, which becomes

κ · ξ +G(ξ)λS(1− α) − T · λS(1− α) = 0. (8)

The equation can be solved using numerical iteration.

40 M. Komu, S. Tarkoma, and A. Lukyanenko

4.3 A Comparison of HIP with Constant Puzzle Cost to the
Scenario without HIP

For numerical examples, we use HIP base exchange measurements obtained from
an experimental setup described further in Section 5. We plot the ratio of non-
HIP versus HIP approaches ϕ shown in equation 7. The HIP base exchange with
a 10-bit puzzle was measured to take 0.215 s of HIP responder’s time and 0.216
s for the initiator. We note that our analysis excludes the impact of parallel
network and host processing. The email forwarding overhead without HIP is set
to 0.01 seconds. We assume that the false negative probability of the server is 1/3
and the false positive probability is 1/104. In other words, 2/3 of spam messages
will be correctly detected as spam, and good messages are rarely classified as
spam. Let NL be 104, NS be 100, λL = 1/360, and λS = 10. The time-period T
for the analysis is 24 hours.

Figure 2 presents the ratio of HIP versus non-HIP computational cost as a
function of the puzzle computation time. Both x and y axes are logarithmic.
Ratio in the figures denotes ϕ, the ratio of the HIP and non-HIP capable mecha-
nisms. The point at which the HIP mechanism has less overhead is approximately
at 2 seconds. This means that the proposed HIP mechanism becomes superior
to the constant non-HIP benchmark case with an 2-second or greater puzzle
computation time. Naturally, this point depends on the selection of the values
for the parameters.

As the spam relay sending rate increases, the HIP spam prevention mechanism
becomes considerably better than the non-HIP benchmark case. With low spam
rates, HIP sessions are reset seldomly and spam flows mostly through. When the
spam rate increases, the spam relay spends more time on puzzle computation
and the spam forwarding rate decreases. Then, the performance of the proposed
HIP mechanism improves in comparison to the non-HIP benchmark case.

4.4 A Comparison of HIP with Exponential Puzzle Cost the
Scenario without HIP

We also analyze the scenario where the puzzle cost grows exponentially for each
new session. The parameters are the same as before, but the computation time of
the puzzle grows exponentially with the puzzle difficulty. Moreover, we introduce
a cut-off point after which the puzzle difficulty does not increase anymore. After
the number of sessions reaches the cut-off point, the computation time of the
puzzle (and the number of bits) remains at the current level. As an example,
given a cut-off point of 23 and an initial puzzle size of 20 bits for the first
throttled session, spam relays experience puzzle sizes {20, 21, 22, 23, 23, . . . } as
they reconnect.

Figure 3 presents the effect of the exponential base exchange time with a vary-
ing cut-off point. The y axis is logarithmic. The figure shows that the proposed
mechanism performs considerably better than the non-HIP benchmark with a
cut-off point of 22 or greater.

Mitigation of Unsolicited Traffic across Domains 41

 0.1

 1

 1 2 4 8 16 32 64

L
o
a
d
 r

a
ti
o
 (

H
IP

 /
 w

it
h
o
u
t
H

IP
)

Puzzle cost in seconds

Puzzle cost

Threshold of 1
Threshold of 2
Threshold of 4

Threshold of 8
Threshold of 16
Threshold of 32

Threshold of 64
Threshold of 128
Threshold of 256

Fig. 2. Fixed-cost puzzles with different spam threshold κ

Now, we have compared HIP with both constant and variable-sized puzzles
to the benchmark scenario without HIP. In the next sections, we focus on the
identity-switching attacks (without cut-off points) against the proposed HIP-
based architecture.

4.5 Optimal Strategies for a Spam Relay

Directly from equation 8, we know that

ξ · κ

λS · (1 − α)
+G(ξ) = T. (9)

This means that, for the entire time during which a server relays spam, it splits its
performance into ξ steps (one step is one session reset). To contact the inbound
server, the spam relay spends G(ξ) time for all puzzle computations, and during
every step it sends exactly κ messages and each step consumes κ

λS(1−α) time.

The inbound server chooses the form of the function G, while a spam relay
selects the number of session resets to tolerate, ξ. Here, we consider first a naive
strategy for the spam relay. It chooses G based on the number of messages to
send and does not try to whitewash its own history at the inbound server (i.e.
by changing its identity according to equation 1). Under such an assumption,
the spam relay has to optimize (maximize) a function of the following form:

pZ · κ · ξ − cZ ·G(ξ), (10)

where pZ is the profit for one delivered message and cZ is the payment for the
puzzle computation time. The strategy for the spam relay is to select

42 M. Komu, S. Tarkoma, and A. Lukyanenko

 0.01

 0.1

 1

 10

 21 22 23 24 25 26 27 28

L
o
a
d
 r

a
ti
o
 (

H
IP

 /
 w

it
h
o
u
t
H

IP
)

Cutoff threshold

Puzzle cost

Threshold of 1
Threshold of 2
Threshold of 4

Threshold of 8
Threshold of 16
Threshold of 32

Threshold of 64
Threshold of 128
Threshold of 256

Fig. 3. Variable-sized puzzles with initial puzzle size of 20 and different cut-off points

the number of rounds for which it would like to send κ-sets of messages and the
number of rounds to recompute puzzles. Let this value be ξ.

Note that if puzzle difficulty is constant (i.e. G(ξ) = TBE · ξ), then solution is
one of the boundary cases

ξ =

{
0, if pZκ ≤ cZ · TBE ,

∞, if pZκ > cZ · TBE ,
(11)

More important is the case when the puzzle computation time is changing. Let
the puzzle complexity growth be exponential compared to the increase of puz-
zle difficulty. Consider that the puzzle computation time on every reset has an
exponential form of Ci = aqi + b, then by definition

G(ξ) =

ξ∑

i=0

(aqi + b) = a
qξ+1 − 1

q − 1
+ b =

aq

q − 1
qξ + b − a

q − 1
. (12)

Let us generalize this function as G(ξ) = kgξ + s, where g is an exponential
growth parameter, s is initial shift, and k is the coefficient.

Now, a spam relay has to maximize the function

pZ · ξ · κ− cZ · (k · gξ + s). (13)

Let us find the points where the derivative of this function with respect to ξ is
zero:

pZ · κ− cZ · k · ln g · gξ = 0. (14)

Mitigation of Unsolicited Traffic across Domains 43

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12P
u

z
z
le

 c
o

m
p

u
ta

ti
o

n
 p

ro
p

o
rt

io
n

Puzzle computation time base (g)

γC=0.5

γZ=0.98

g=5.5

Spam relay rate
Legitimate relay rate

Fig. 4. An example plot to illustrate the proportion of time used by a legitimate and
spam relay for puzzle computation

Thus, the maximum point is

ξ∗ = logg
pZ · κ

cZ · k · ln g . (15)

4.6 Optimal Strategies for an Inbound Server

The previous section suggests an optimal strategy for a spam relay under the
assumption that there is a payment involved in sending of spam. Otherwise,
infinite number of messages would be the optimal strategy for the spam relay. In
this section, we have a look at the situation from the view point of an inbound
server.

First of all, the main goal for the inbound server is to slow down the flood of
spam. It may be formulated in terms of the portion of time which spam relays
spend for the puzzle computation time, compared to the overall time. Here, we
assume that the inbound relay knows the number of HIP session resets during
which spammer reuses its current identity according to equation 1. As previously,
let it be ξ. To process ξ resets, a spam relay has to waste G(ξ) of its own time
for puzzle computation. The overall time, which it may use for message delivery,
we also define as a function of ξ. Thus, the definition of the overall time follows
from equation 9

T (ξ) = ξ
κ

d
+G(ξ), (16)

where d is equal to λZ(1 − α) in case of a spam relay, and is equal to λCβ in
case of a legitimate email relay. We assume that an inbound server classifies
(or receives classification) with relatively good accuracy and, hence, 1 − α is
considerably higher than β.

Then, the proportion of time used for puzzle computation by spam relays (on
left side) and legitimate email relays (on the right side) can be calculated as

G(ξ)

G(ξ) + κ·ξ
λZ ·(1−α)

,
G(ξ)

G(ξ) + κ·ξ
λC ·β

. (17)

44 M. Komu, S. Tarkoma, and A. Lukyanenko

The inbound server has control over variables k, g, s of function G(ξ) = kgξ+s.
For simplicity, let k and s be constants because the most relevant variable is the
growth base g for the puzzle computation time. The values grow as a function
of the parameter g. The function results in values ranging from 0 to 1, where
0 means that the time spent for the puzzle computation is negligible, while 1
means that the puzzle computation takes all of the time.

For the functions (17), the objective of the inbound server is to maximize the
time spam relays spend on computing puzzles. Correspondingly, the inbound
server should minimize this time for legitimate relays. These are somewhat con-
tradictory conditions because α < 1 and β > 0. Therefore, punishment for
possible spam relays affects also legitimate relays.

To overcome this dilemma, we introduce a new constant γ: 0 ≤ γ ≤ 1, which
we select as the maximum value for the possibly legitimate client computation
rate, i.e.

G(ξ)

G(ξ) + κ·ξ
λC ·β

≤ γ, (18)

where γ defines the portion of the overall time which a possibly legitimate client
spends for puzzle computations. From the inequality 18 it follows, that

g ≤
(
γ · (κ · ξ + s · λC · β)
k · λC · β · (1− γ)

) 1
ξ

. (19)

On the other hand, the inbound server should maximize puzzle computation
rate for possible spam relays (the left function in equation 17, which grows
exponentially towards 1 as a function of g). The optimal strategy for the server
is

g∗ =

(
γ · (κ · ξ + s · λC · β)
k · λC · β · (1− γ)

) 1
ξ

. (20)

The optimal strategy both for a spam relay, ξ∗(g), as shown in equation 15, and
for an inbound server, g∗(ξ), as shown in equation 20, results in an equilibrium
point (ξ∗, g∗) in terms of game theory.

The optimal strategies are illustrated in figure 4. For the legitimate relay, the
bound for the computation rate is fixed as γC = 0.5 The set of parameters is
assigned as α = 0.5, β = 0.01, κ = 100, λC = λZ = 10, and we assume that
the number of session resets is 5 (ξ = 5). Under such parameters, the legitimate
relay has g ≈ 5.5. The resulting puzzle computation for a possible spam relay
is γZ = 0.98. In other words, the spam relay spends 0.98 of its time for puzzle
computations whereas the legitimate relay spends half of its time. As g grows,
both parties are eventually spending all of their time for puzzle computation.
Thus, it is a local policy for the inbound server to decide a “good” value for g
in terms of how much legitimate servers can be throttled with puzzles. For low
spam rates, the value can be small but, with high spam rates, the server may
increase the value at the cost of throttling also legitimate relay servers.

Mitigation of Unsolicited Traffic across Domains 45

5 Experimental Evaluation

In this section, we describe how we integrated puzzle control to an inbound
SMTP server and its spam filtering system. We show some measurements with
variable-sized puzzles and compare this against identity-generation costs to give
some engineering guidance against identity-switching attacks. The source code
for HIP for Linux and the spam extensions are available as open source 1. It
should be noted that evaluation the mathematical models presented in section
4 e.g. with network simulators is future work.

5.1 Setup

The experimented environment consisted of two low-end commodity computers
with the Linux Debian distribution and HIP for Linux (HIPL) [12] implemen-
tation. One computer served as a sending SMTP relay (1.60GHz Pentium M)
and the other represented a receiving SMTP server (Pentium 4 CPU 3.00GHz).
The receiving server detects the spam messages and closes the HIP session when
a threshold is reached for the session. The inbound server was configured not
to reject any email. We were mostly interested in software changes required to
deploy HIP in SMTP servers and in the effects of increasing the puzzle size.

5.2 Results

We implemented the spam throttling mechanism successfully by using unmodi-
fied sendmail. We turned on the IPv6 option in the configuration of sendmail in
order to use HITs.

The receiving SMTP server was equipped with a modified version of Spa-
mAssassin Milter. The changes were straightforward to implement. The milter
increased the puzzle size by one for every κ spam message detected and closed
the HIP session to induce a new base exchange. The puzzle computation time
grew exponentially with the size of the puzzle and the spam sender was throttled,
as expected, by the mechanism.

We faced some implementation challenges during the experimentation. Firstly,
sendmail queues the email messages and this makes it difficult to provide mea-
surements from the spam filtering process itself. Secondly, if the session with the
SMTP server is lost temporary, for example, because the HIP association are is
closed, e-mails can accumulate in the queue for an extended time. Thirdly, when
sending excessive amounts of email, the built-in connection throttling mecha-
nism in sendmail takes over and queues the emails for long periods. However,
sendmail’s queuing process was robust and eventually emptied the queue suc-
cessfully.

One challenge with proof-of-work techniques is that there are many different
devices on the network and their computing capabilities vary. By default, the
puzzle difficulty is zero in HIPL. A puzzle with difficulty of 25 bits took 12.4 s on

1 https://launchpad.net/hipl/

46 M. Komu, S. Tarkoma, and A. Lukyanenko

average on the low-end machine used in the performance tests. The time was 4.4
seconds on a more recent CPU (Intel Core 2, 2.3 Mhz) on a single CPU core. The
puzzle algorithm used in HIP does not prevent parallel computation. Thus, the
computation time could be decreased by fully utilizing multi-core architectures.

For identity changing attacks, the strategy should also take into account the
public key algorithm. RSA keys can be created faster than DSA keys with a cor-
responding size. As a consequence, the responder should give initiators that use
RSA public keys more difficult puzzles than initiators with DSA keys. Further,
it should be noted that creation of insecure, albeit perfectly valid keys, can be
faster than creation of secure ones.

Figures 5(a) and 5(b) contrast secure key-pair generation time (horizontal
lines) with puzzle solving time (vertical lines). It should be noticed that the
y-axis is logarithmic. From the figures, it can be observed that the puzzling
solving time is, as expected, exponential with the number of bits used in the
puzzle difficulty. The standard deviation grows as puzzle difficulty is increased.
In addition, the time to generate DSA key-pairs is considerably higher than
RSA. On the average, the creation of a 2048-bit DSA key pair took 6.46 seconds
and this was equal to the solving time of a 24-bit puzzle. With RSA, creation
of a 2048-bit key pair took 0.72 seconds which corresponded to a 21-bit puzzle.
This indicates that the key-generation algorithm and key length need to be taken
into account when deciding the initial puzzle size to discourage identity-switching
attacks.

 69.81

 25.61

 6.46

 2.03
 0.79

 0.13

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e/

s

puzzle difficulty K

puzzle(K)
DSA 512

DSA 1024
DSA 1536
DSA 2048
DSA 3078
DSA 4096

(a) Puzzle solving vs. DSA key generation

 8.8

 2.51

 0.72
 0.3

 0.09

 0.03

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tim
e/

s

puzzle difficulty K

puzzle(K)
RSA 512

RSA 1024
RSA 1536
RSA 2048
RSA 3078
RSA 4096

(b) Puzzle solving vs. RSA key generation

Fig. 5. Puzzle computation time results

6 Conclusions

In this paper, we proposed a cross-layer identity solution for mitigating unso-
licited traffic between administrative domains. The proposed architecture pri-
marily concentrates on inbound session control but is applicable also to the
outbound direction as well. As an example application of the system, we focused
on email spam prevention.

Mitigation of Unsolicited Traffic across Domains 47

The Host Identity Protocol introduces a public key for the hosts. They key
can be used for identifying well-behaving SMTP servers. The proposed ap-
proach introduces a cost to sending spam using the computational puzzles in
HIP. Large-scale changes to the SMTP architecture are not required because
HIP is backwards compatible. However, a practical limitation of the approach is
that it requires wide-scale adoption of HIP as a signaling protocol and requires
integration of HIP puzzle control to inbound email servers.

We presented a formal cost model that considered static and exponential base
exchange puzzle costs. The analytical investigation indicates that the proposed
spam prevention mechanism is able to mitigate unwanted traffic given a set of
reasonable parameters. We used parameter values based on experimental results
for server-side cost of HIP and the puzzle computation time. A spam mitigation
approach based on HIP puzzles caused less load at the email server than an
approach that was not using HIP.

The exponential cost of the puzzle introduces more work for email servers
relaying spam. However, it also results in an incentive for the spammer to switch
its identity when it is throttled with more difficult computational puzzles. We
identified this as a potential weakness of the proposed system and analyzed
this from the viewpoint of the spammer and the email server. As a theoretical
result, we provided a method for the server to choose an optimal strategy against
identity switching. When choosing a strategy, it should be noted that increasing
puzzle costs for spammers also increase costs for legitimate hosts.

We implemented a simple prototype of the system based on a popular email
server, sendmail. We integrated throttling support for HIP puzzles with mini-
mal changes to SpamAssassin, a popular spam filtering software. We reported the
practical experiences of running such a system and showed real-world
measurements with HIP puzzles.

While the simple prototype was a success, we observed that the use of compu-
tational puzzles with email relays is challenging. Malicious hosts can overwhelm
and exhaust the resources of a relay unless preventive measures are taken. Po-
tential solutions to this include refusal to solve large puzzles for hosts, mes-
sage rejection, and blacklisting. More work with simulation or larger test beds
is needed to establish the efficacy of the proposed cross-layer system and to
validate our mathematical models.

Acknowledgements. We would like to thank the following people for providing
valuable feedback for this paper: Jaakko Kangasharju, Teemu Koponen, Kristian
Slavov, Antti Järvinen, Oleg Ponomarev, Andrei Gurtov and Tuomas Aura. This
work was supported by Tekes InfraHIP project and the Academy of Finland,
grant numbers 135230, 122329 and 135230.

References

1. Aura, T., Nikander, P., Leiwo, J.: Dos-Resistant Authentication with Client Puz-
zles. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Pro-
tocols 2000. LNCS, vol. 2133, pp. 170–177. Springer, Heidelberg (2001)

48 M. Komu, S. Tarkoma, and A. Lukyanenko

2. Back, A.: Hashcash (May 1997), http://www.cypherspace.org/hashcash/
3. Beal, J., Shepard, T.: Deamplification of DoS Attacks via Puzzles (October 2004),

http://web.mit.edu/jakebeal/www/Unpublished/puzzle.pdf

4. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg
(1993)

5. Eggert, L., Laganier, J.: Host Identity Protocol (HIP) Rendezvous Extension. IETF
(April 2008), Experimental RFC

6. Goodman, J., Rounthwaite, R.: SmartProof. Microsoft (2005),
http://research.microsoft.com/en-us/um/people/joshuago/smartproof.pdf

7. Jokela, P., Moskowitz, R., Nikander, P.: RFC5202: Using the Encapsulating Secu-
rity Payload (ESP) Transport Format with the Host Identity Protocol (HIP) Inter-
net Engineering Task Force (April 2008), http://www.ietf.org/rfc/rfc5202.txt

8. Keränen, A., Camarillo, G., Mäenpää, J.: Host Identity Protocol-Based Overlay
Networking Environment (HIP BONE) Instance Specification for REsource LO-
cation And Discovery (RELOAD). Internet Engineering Task Force (July 2010)
(internet draft, work in progress)

9. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.: RFC5201: Host Identity
Protocol. Internet Engineering Task Force (April 2008); Experimental RFC

10. Nikander, P., Henderson, T., Vogt, C., Arkko, J.: End-Host Mobility and Multi-
homing with the Host Identity Protocol. Internet Engineering Task Force (April
2008); Experimental RFC

11. Nikander, P., Laganier, J.: Host Identity Protocol (HIP) Domain Name System
(DNS) Extension. IETF (April 2008); Experimental RFC

12. Pathak, A., Komu, M., Gurtov, A.: Host Identity Protocol for Linux. Linux Journal
(November 2009), http://www.linuxjournal.com/article/9129

13. Tritilanunt, S., Boyd, C., Foo, E., Nieto, J.M.G.: Examining the DoS Resistance of
HIP. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS,
vol. 4277, pp. 616–625. Springer, Heidelberg (2006)

14. Tschofenig, H., Shanmugam, M., Muenz, F.: Using SRTP transport format with
HIP. Internet Engineering Task Force (August 2006); expired Internet draft

Publication IV

Janne Lindqvist, Essi Vehmersalo, Miika Komu and Jukka Manner. Enter-

prise Network Packet Filtering for Mobile Cryptographic Identities. Interna-

tional Journal of Handheld Computing Research (IJHCR), Volume 1, Issue

1, pp. 79-94, ISSN 1947-9158, January 2010.

c© 2010 IGI Global.

Reprinted with permission.

149

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 79

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Keywords:	 Firewalls, Network Security, Host Identity Protocol, HIP, Packet Filtering

Introduction

Remote access to corporate service is very chal-
lenging to set up and configure in a secure way.
The simplest way is on a per-service basis, by
using HTTP and TLS and introducing a login
function to public servers. Unfortunately, this
leaves the server open for various attacks,
e.g., DoS, since it must be open to any remote

client regardless of the source IP address, and
unlawful access attempts are caught very late
in the login process.

To enable better security, and to disable
most forms of attacks on the services, a VPN
solution can be used, together with a tightly
controlled firewall configuration. Through a
VPN, corporate services are available for the
client only after a successful VPN login trans-
action. Yet, also here the VPN server needs to
be available to the public, and can be attacked.
Moreover, configuration of the firewall is a

Enterprise Network
Packet Filtering for Mobile
Cryptographic Identities

Janne Lindqvist, Helsinki University of Technology, Finland

Essi Vehmersalo, Helsinki University of Technology, Finland

Miika Komu, Helsinki Insitute for Information Technology, Finland

Jukka Manner, Helsinki University of Technology, Finland

Abstract
Firewalls are an essential component of the Internet and enterprise network security policy enforcement to-
day. The configurations of enterprise firewalls are typically rather static. Even if client’s IP addresses can be
dynamically added to the packet filtering rules, the services allowed through the firewall are commonly still
fixed. In this paper, we present a transparent firewall configuration solution based on mobile cryptographic
identifiers of Host Identity Protocol (HIP). HIP allows a client to protect the data transfer with IPsec ESP,
and supports dynamic address changes for mobile clients. The HIP-based firewall learns the identity of a
client when it communicates with the server over HIP. The firewall configures the necessary rules based on
HIP control messages passing through the firewall. The solution is secure and flexible, and introduces only
minimal latency to the initial HIP connection establishment.

DOI: 10.4018/jhcr.2010090905

80 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

further cause of concern. First of all, setting up
proper filtering rules for corporate firewalls is
not a trivial task. Secondly, changing the con-
nectivity provider results in network renumber-
ing which further requires a full reconfiguration
of the firewall. It is also also possible that the
address of single VPN client changes due to
device mobility or DHCP lease renewal. In
such a case, the client has to reinitialize the
VPN connection.

Two additional security concerns arise from
the use of a typical VPN service. First, typically
all the corporate services become available to the
user when VPN gateway or firewall accepts a
VPN connection. Then, a malicous user, virus or
worm can try to mount an attack on any service
of the corporation because VPNs do not offer
protection against “internal” attacks. Second,
the corporate services become vulnerable to at-
tacks to “external” attacks if the device of a user
is compromised. The attacker can route its own
packets using the compromised device through
the VPN tunnel to the corporate network. Hence,
the attacker can practically mount any type of
attack on the corporate services.

The second security concern was high-
lighted as part of the Microsoft Windows Vista
routing compartments functionality, which was
supposed to be included in the new operating
system. The basic idea was that remote access
from the user device is controlled per applica-
tion, and not per host, making it impossible to
route packets between interfaces, WLAN and
VPN interfaces in our example. Yet, it is still
not included, and one can only guess what the
reasons are. Nevertheless, the security vulner-
ability still remains.

Firewalls are, unfortunately, a critical com-
ponent of corporate and personal networks in the
Internet today. Packet filtering is typically based
on the 5-tuple of sender and receiver IP addresses
and port numbers, and the transport protocol.
Sophisticated firewalls can also filter based
on the content of application layer protocols.
Commonly, the filtering rules are quite static
and constrained. The firewall passes only certain
services and a known set of hosts through. In
more dynamic networks, for example, offeering

public or subscription-based WLAN access, or
nomadic enterprise environments, the firewalls
are controlled and rules set up based on some
authentication exchange. Typically, a client is
authenticated and authorized to use a WLAN
service based on a web browser login applica-
tion. If the login is successful, the firewall opens
predefined services for the MAC and IP address
of the client device. Only then the client can
start access Internet to, for example, browse the
web, or initiate VPN connections.

The current situation has at least four
downsides. First, authentication for network
access has a number of different implementa-
tion choices, which may or may not work with
the device of the user, for example, on laptop
computers, PDAs, or smart mobile phones.
Second, the firewall allows the client to only use
certain pre-defined services even when the cli-
ent is authenticated successfully and authorized
to use the Internet. It would be more useful to
have a separate signaling protocol dynamically
manage the filtering rules associated with a given
authenticated client. Third, a third party can still
listen to the network communications, collect
varying information, and steal the identity of an
authenticated client. Fourth, network renumber-
ing becomes a problem, because all static rules
on firewalls that are based on IP address must be
changed when renumbering occurs. The same
problem of updating firewall rules appears in
access networks, where the IP address assigned
to a client can change during the session, for
example, in a mobile access network when the
client performs a handover.

Setting up IP-based rules in a firewall to
protect servers with roaming clients is difficult.
Since the firewall cannot know the IP addresses
of roaming employees, the rules that protect
the network services must be quite liberal,
or access is only possible through a separate
VPN tunnel.

There seems to be a need for a remote access
mechanism, that does not expose the corporate
services to the security vulnerabilities described
in this section, requires minimal configuration,
is easy to set up and is operating-system in-
dependent. We have compared at a number

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 81

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of alternatives and eventually we started to
investigate the use of the Host Identity Protocol
(HIP) as such a mechanism.

In this paper, we present a firewall archi-
tecture that allows efficient, scalable and secure
network packet filtering. Our solution solves
all the problems discussed above. The firewall
is based on the Host Identity Protocol (HIP)
(Moskowitz & Nikander, 2006) and tracking the
protocol control messages and IPsec ESP SPI
values. Although the standard IPsec architecture
could be used to implement firewalls (Aura et al.,
2005), our architecture provides a simple way
to centrally enforce security policies regardless
of host IPsec security policies. The architecture
also allows to group and present services with
cryptographically tamper-proof identities.

Our solution primarily targets the initial
connection set up. Once the HIP control mes-
sage exchange has been authenticated, subse-
quent message filtering is simply based on the
source and destination IP addresses and SPI
numbers of ESP packets. Thus, the processing
overhead only applies in the beginning of the
data connection. Our measurements show that
this processing adds a negligible overhead to
the connection initiation. A modern firewall
with our architecture can support thousands of
connection initiations per second.

One of the key features of using HIP and a
HIP-enabled firewall is that the administration
of the network does not need to care about IP
addresses. Thus, the network can perform re-
numbering, and support mobile users without
changes in the firewall rules. Moreover, when
the client is using HIP, it does not need to em-
ploy any additional protocol for authentication
and firewall control, either inside or outside
the enterprise network. Furthermore, the solu-
tion also allows encrypting the data transfer
end-to-end.

The firewall solution introduced in this
paper does not require Internet-wide deploy-
ment of HIP. An enterprise can deploy HIP
gradually to harness the integrated security,
mobility, and multihoming capabilities for
employees. Services and clients that do not use
HIP continue to operate with the old system.

In summary, by using HIP to access a service,
the client is able to perform simultaneously
network access authentication and authoriza-
tion, firewall control, data transfer protection,
and mobility management.

One of the key strengths of our design is that
HIP can be used in any kind of wired or wireless
network, for example, xDSL, Ethernet, WLAN,
WIMAX, 3G, and any technology beyond 3G.
For example, a modern mobile intelligent device
with multiple different wireless link technolo-
gies can use the same mechanism for firewall
traversal and configuration regardless of the
active wireless connectivity.

In the next section we discuss related work,
and in Section 3 we present the Host Identity
Protocol in detail. In Section 4 we describe
the firewall architecture and implementation,
followed by performance evaluations, and a
discussion of the solution.

Related Work

We have reviewed a number of solutions for
firewall control that would support secure mo-
bility and multihoming. The solutions included
proposals from Tschofenig et al. (Tschofenig et
al., 2005a) and the IETF NSIS working group
(Stiemerling et al., 2008). However, these ap-
proaches required explicit signaling with the
firewall that contradicts our goal of transparent
firewall control.

Firewalls have been a well-established
technology throughout most of the modern
Internet. The basic IP level filtering has been
complimented with different extensions to filter
transport layer protocols or different application
layer technologies, for example, stateful filtering
for TCP (van Rooij, 2000). SOCKS (Leech
et al., 1996) is a framework for application
and transport level gateway technologies for
monitoring network connections. The SOCKS
gateway is essentially a proxy, which authen-
ticates a client establishing a connection and
relays the connection request to server. Different
authentication technologies can be incorporated
into the SOCKS functionality. SOCKS gateway

82 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

may also contain translation functionalities to
provide communication between IPv4 and IPv6
nodes (Kitamura, 1999).

SANE is a protection architecture for en-
terprise networks (Casado et al., 2006). It uses
a centralized domain controller to implement
security policies for the whole network. Clients
contact the domain controller and need explicit
permission to access any resources. The security
policies can be expressed in natural ways, e.g.
“give the multimedia group access rights to
the company’s mp3 server”. The architecture
introduces a new layer between link and IP
layer, and is implemented in network switches.
The architecture supports mobility, but only
within the enterprise network. Also, SANE
cannot be used to enforce security policies to
internetworks such as the Internet.

Delegation oriented Architecture (DoA)
proposes an extension to the current Internet
architecture to facilitate the deployment of
middleboxes (Walfish et al., 2004). It intro-
duces a new layer and protocol between the
network and transport layers. The new layer
uses cryptographically secure identifiers simi-
lar to HIP. Using the new “middlebox” layer
and identifiers, end-hosts can enforce the use
of middleboxes, such as firewalls, even when
they are not located on the path. Chaining of
middleboxes is also possible by allowing the
identifiers to be resolvable recursively to other
identifiers.

SPINAT (Ylitalo et al., 2005) tackles
problems related to IPsec awareness in NATs.
One problem in traversing IPsec aware NATs
is that the end-hosts determine the IPsec SPIs.
This may cause SPI collisions especially when
the end-host population within a single NAT
is large. A straw-man solution is to drop the
keyexchange messages with colliding SPIs
and require the key exchange daemons to retry
with different SPIs after a timeout. However,
SPINAT proposes a more efficient solution with
the IPsec SEET (Ylitalo et al., 2005) mode,
which allows NATs to translate ESP SPIs upon
collisions. The approach is applicable to asym-
metric communication paths and can be used to
integrate IPsec to overlay routing. Possibility

of IPsec traffic filters are mentioned briefly,
but not discussed in detail. The main problem
of the SPINAT approach is related to deploy-
ment because many existing middleboxes do
not support IPsec.

A number of IPsec related asecurity vulner-
abilities are described by Aura et al (Aura et
al., 2005). They conclude that security policies
based on IP addresses can be circumvented in
many ways. In HIP, security policies are based
on hashes of public keys that makes HIP resilient
against those types of attacks.

Ioannidis et al. (Ioannidis et al., 2000) have
presented an implementation of a distributed
firewall system. The authors use KeyNote to
distribute the firewall policies to end-hosts.
Their approach supports centralized manage-
ment of security policies. A drawback is that it
requires the end-hosts to update their security
policies regularly. As a benefit, the approach
allows fine-grained filtering at application layer
and a centralized firewall is not a bottleneck
for the network.

A preliminary version of this work ap-
peared as a two-page extended abstract in the
posters session of Usenix ATC 2007 (Lindqvist
et al., 2007). The abstract presented motivation
for the approach and notes on the preliminary
implementation and performance.

Host Identity Protocol
Architecture

This section presents the Host Identity Proto-
col Architecture explains its protocol mecha-
nisms.

The Host Identity Protocol (HIP) (Moskow-
itz & Nikander; 2006 Moskowitz et al., 2008)
renews the current TCP/IP architecture by in-
troducing a new, cryptographic namespace, the
Host Identity namespace, between the transport
and network layers as shown in Figure 1. The
new namespace consists of Host Identifiers
(HIs). A HI is the public keys component of a
private-public key pair. HIs can be either public
or anonymous. The public HIs can be published,
for instance, in the Domain Name System

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 83

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(DNS) (Nikander & Laganier, 2008). The public
identifiers are intended to be long-lived and the
anonymous short-lived. For practical purposes,
the public keys - the Host Identifiers - are rep-
resented by self-certifying hashes of the keys.
The hash is called the Host Identity Tag (HIT).
The advantage of using HITs instead of HIs, is
that HITs are same size as IPv6 addresses and
are compatible with current applications. For
example, the HITs can be used to replace IPv6
address fields in other existing protocols and
Application Programming Interfaces (APIs)
(Moskowitz et al., 2008; Komu & Henderson,
2008). HIP also supports Local Scope Identifiers
(LSIs) that can be used by legacy IPv4 software
because the size of LSIs equals to the size of
IPv4 addresses.

HIP architecture proposes so called identi-
ty-locator split which relieves IP addresses from
their dual role of both identifying and locating
end-hosts. In this new TCP/IP architecture,
HIs identify endpoints and IP addresses are
used to route packets between hosts. By split-
ting the dual role of unicast IP addresses, HIP
supports end-host mobility and multihoming

in a relatively straighforward way (Nikander
et al., 2008).

The identifiers of the new namespace are
deployed locally to the end-hosts in HIP. Alter-
natively, they can be deployed to global name
services, such as DNS, or any overlay, such as
OpenDHT (Rhea et al., 2005). However, HIP
can be used without any support from the infra-
structure by learning the peer’s identifier in an
opportunistic fashion during HIP key exchange
negotiation (Moskowitz et al., 2008).

The HIP specification (Moskowitz et al.,
2008) defines base exchange, which creates a
secure communication context, called a HIP
association, between two hosts. During the base
exchange, two hosts authenticate to each other
using their public keys and can create a pair
of ESP Security Associations (SAs) (Jokela et
al., 2008). The base exchange consists of four
messages shown in Figure 2. The two hosts are
referred as the Initiator (client) and Responder
(server).

The HIP control packets consist of a fixed
header and variable amount of parameters. The
header contains the source and destination HITs
and some other fields. All of the packets are

Figure 1. HIP layering model

84 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

protected with public-key signatures except the
first one. The first packet, I1, does not contain
any parameters. The second packet, R1, contains
the HI the Responder, Diffie-Hellman keying
material and a computational puzzle (challenge)
for the Initiator to solve. The puzzles are used
as a mechanism for Denial of Service protection
(Moskowitz et al., 2008). The Initiator sends
solution to the puzzle, its HI, Security Parameter
Index (SPI) for identifying incoming IPsec ESP
flow and Diffie-Hellman keying material in I2
packet. The Responder remains stateless until
it receives a valid I2. Upon receiving the I2, the
Responder verifies the solution to the puzzle,
creates state and concludes the base exchange
with an R2 packet that contains its SPI number
for incoming ESP flow.

HIP mobility and multihoming (Nikander
et al., 2008; Nikander et al., 2003) takes place
with UPDATE packets after a successful base
exchange. A host moving to a different network
reestablishes communications with its associ-
ated peers by sending an UPDATE packet to
its peers. The packet contains parameter called
LOCATOR which lists all locators of the mobile
host. The parameter can be used in HIP control
messages to inform other hosts about alternate
addresses at which the originating peer can be
reached. This ensures that address bindings can

be updated dynamically without breaking the
connections. HIP can also be used to establish
efficient IPv4 to IPv6 handovers without tun-
nelling (Jokela et al., 2003).

Rendezvous servers (Laganier & Eggert,
2008) are complementary middleboxes in the
HIP architecture. The rendezvous servers have
a fixed IP address and serve as a stable contact
points for end-hosts. End-hosts update their
current location to their rendezvous servers
always when they move. As an example, the
rendezvous server are useful when two com-
municating end-hosts cannot publish their new
location to each other directly after relocating
simultaneously. Instead, they contact each other
indirectly through their rendezvous servers that
always know where the end-hosts are located.
The rendezvous servers forward the first HIP
control messages until the end-hosts have syn-
chronized their new locations to each other and
can communicate directly.

Firewall Architecture

Our firewall operates on HIP control messages
and ESP flows introduced in the previous sec-
tion. Next, we describe the details of filtering
design and the security consequences.

Figure 2. HIP base exchange

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 85

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The Basic Firewall Design

The HIP-based firewall uses HITs to filter pack-
ets, but also certain other properties of network
packets can be used in the firewall rules. When
an Initiator sends an I1 through the firewall, it
verifies that the HITs of the I1 message match
the filtering rules and then records the HITs and
IP addresses of the Initiator and Responder. The
firewall has no means to validate the I1 because
it does not contain any signatures. Therefore, a
forged I1 can reach the Responder through the
firewall. However, the firewall blocks the ESP
data packets between the two hosts until the
base exchange is completed successfully.

The responder sends an R1 and the firewall
checks the HITs from its ACLs. This can be
used to enforce access control restrictions on the
Responders behind the firewall. The firewall re-
cords the HITs of the Initiator and the Responder
and their IP addresses from the R1.

Upon receiving the R1, the Initiator solves
the puzzle and replies with an I2 packet. The
signed I2 packet contains the public key of
the Initiator. The firewall verifies the signature
either using the public key in the I2 packet or a
preconfigured public key. If the verification fails,
the firewall discards the I2 packet. Similarly,
the firewall verifies signature of the concluding
R2 packet from the Responder. The I2 and R2
packets contain the SPI values for IPsec ESP
that the firewall requires to track ESP traffic.
The firewall also tracks UPDATE messages to
continue the tracking of IPsec ESP flows when
the IP address of an end-host changes.

Further, the firewall expires the associated
state when there is no traffic between the two
related end-hosts for a certain time period. This
guarantees that the state is removed when the
firewall is no longer on the path between the
two end-hosts. This can occur, for example,
when an end-host moves to a different network
or shuts down.

Service Identifiers

The IPsec architecture supports encryption
between two hosts. The firewall architecture

presented in this paper filters traffic based
on HIP control messages and ESP flows. The
firewall does not receive the ESP encryption
keys of two communicating hosts, and therefore
cannot inspect e.g. port numbers in the related
ESP flows. Thus, the filtering granularity is
lesser than for unprotected traffic where the
five-tuple is visible. However, this problem ex-
ists even without HIP. For example, it is present
in all communications that use IPsec ESP. The
problem is also present in TLS, although the
port numbers are visible in TLS.

Since the port numbers are not visible in the
payload of IPsec ESP, a HIP-aware middlebox
requires another way to distinguish between dif-
ferent ports, i.e. services, available at a server. In
order to allow more granularity in filtering, we
propose using the Host Identifiers also as service
identifiers. For each service a server offers, it
creates a different public/private key pair. This
way, a HIP-aware middlebox or the server itself
can separate different services and allow only
certain clients to access certain services.

This service identifier approach is compat-
ible with current name look up services. It is a
common practice to have separate host names
for different services, such as smtp.my.org and
www.my.org. Introducing HIP-based service
identifiers to the existing DNS would just re-
quire adding HIs to DNS (Nikander & Laganier,
2008), with each service a different HI. The
HIs can be owned by a single host or multiple
hosts. The approach is backwards compatible
in the sense that existing servers could still be
able to serve non-HIP clients and use existing
filtering methods.

An alternative solution to this problem is
to introduce a protocol extension to HIP that
allows to share the ESP encryption key with
the firewall. This can be used also for content
filtering purposes, such as, removing viruses
from the traffic. This approach is, however,
beyond the scope of this paper.

Implementation

Figure 3 shows the design of the firewall
implementation (Vehmersalo, 2005). It is based

86 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

on Linux Netfilter framework (Ziegler, 2001)
to intercept network traffic. We used C-based
HIPL implementation (Candolin et al., 2003)
in our experimentation.

Overview

The main module of the firewall receiving
packets from network interfaces and analyses
the packets. It uses the other components
of the firewall to produce verdicts based on
properties of the packets received. The verdict
decides whether the firewall accepts or drops
the packet.

The firewall rules define the local security
policies and are contained in the firewall rule set.

The firewall rule management module manages
the rules and verifies the rule syntax.

The Linux netfilter module contains hooks
to the Linux networking stack to intercept pack-
ets. The HIP firewall registers to QUEUE target
of netfilter and subscribes to HIP-related packet
events. The QUEUE target allows userspace ap-
plications to read packets from the networking
stack and assign verdicts on them.

Packet Filtering

The packet filtering consists of two functional-
ities. First, the firewall analyses packets based
on the properties defined in the firewall policies.
Second, the firewall assigns a verdict based on
the analysis results and policy.

Figure 3. Overall implementation of the firewall architecture. Arrows denote interactions between
different components

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 87

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

The firewall provides a number of static
properties for packet analysis. The properties
include include identity-based authentication
of packets, HIP packet type and the direction
of the packet (incoming and outgoing). The
authentication compares source and destination
identities with the firewall rules and also verifies
packet signatures. The identities can be specified
either has HITs or HIs in the firewall rules.

Connection Tracking

The packet filtering module calls the connec-
tion tracking module when a packet has to be
filtered according to the connection state. The
main purpose of connection tracking module
is to maintain necessary state information to
map individual packets to HIP associations.
Connection tracking uses source and destina-
tion HITs of the HIP control headers, or HIs
when available, to associate a HIP packet to a
HIP association.

HIP base exchange and mobility-related
packets include SPI numbers that the firewall
uses to map ESP data packets to the correspond-
ing HIP associations. When firewall analyzes a
base exchange, the connection tracking module
associates the SPI numbers to the HIP asso-
ciation. This way, the connection tracking can
filter unwanted ESP communications based
on identities.

The connection tracking module can also
authenticate packets and verify packet signa-
tures similarly as the packet filtering module.
However, instead of static verification, connec-
tion tracking module extracts HIs from HIP traf-
fic dynamically and uses the HI to authenticate
the end-point in further communications. The
authentication has different nature in connection
tracking than in packet filtering. Connection
tracking does not verify the identity against
static rules but instead attempts to assure the
property of sender invariance (Tschofenig et
al., 2005b). The sender invariance guarantees
that independent of the particular identity, the

traffic can be trusted to be originating from the
same responder throughout the lifetime of the
connection. This is necessary, for instance, in a
situation where trusted host inside the network
initiates a connection to a previously unknown
external host. Thus, the sender invariance
makes it more difficult for attacking hosts to
abuse the dynamically created access through
the firewall.

The connection tracking module also ana-
lyzes UPDATE packets. When host introduces
a new destination address related to an SPI, or
an entirely new SPI, the connection tracker
saves the new information to its state structures.
The connection tracking must take into account
that the two end-points maintain separate state
information. This affects, for example, rekeying
situations, where old information must remain
valid until the other endpoint has acknowledged
the new information. In practice, data packets
with an old SPI could still be on the way when
new SPI is announced. This principle is also
discussed by van Rooij (2000) in the context
of TCP protocol.

The connection tracking module inserts
a timestamp into a connection data structure.
The timestamp is then updated whenever valid
packets of the connection are encountered.
For detecting idle connections, the connection
tracker checks the timestamps against a pre-
defined timeout value. Idle connection could
result, for example, when a host roams to another
network where data is no longer intercepted by
the firewall, or just shutdowns. Also, the state
created in the firewall by the insecure I1 - R1
exchange does not reserve resources of the
firewall indefinitely because of the time-out
mechanism.

Data Structures

HIP connection tracking module has structures
similar to Netfilter’s connection tracking. The
structures are illustrated in Figure 4. As with
Linux Netfilter, a tuple data structure contains

88 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

information that directly carried by a packet.
The implementation provides tuples for both
HIP and ESP packets, each in their own data
structures.

Performance Evaluation

We conducted some measurements with the
firewall prototype to understand its perfor-
mance. The evaluation environment consisted
of a server and five clients. The five clients
were located in their own network, separated
from the server using a single router that acted
also as the HIP-based firewall. The network
interfaces operated at 100 Mbit speed and we
used IPv6 for connectivity. All of the hosts
had a single Pentium 4 processor (3 Ghz) and
their Linux kernel version was 2.6.17.3. We
used 1024 bit RSA keys as Host Identifiers.
The symmetric keys for IPsec were AES (128
bits) for HIP encryption, SHA1 (160 bits) for
IPsec authentication and 3DES (192 bits) for
IPsec encryption.

We measured the time observed by an client
application to complete UNIX connect() system
call, which executes a TCP handshake. This
time was under 1 ms on the average without
HIP. HIP and HIT verification at the firewall,
this time was 65 ms on the average due to the
extra processing cost of the base exchange.
The verification of public key signatures at the
firewall caused an extra delay of 1 ms at the
maximum. The TCP handshake performance
is summarized in Figure 5.

Thus, the firewall prototype introduced
only a millisecond delay to a HIP-based TCP
connection establishment in our test environ-
ment. In other words, the firewall implementa-
tion can support thousands base exchanges and
mobility updates per second. Filtering ongoing
connection creates a similar processing load as,
for example, IP address based packet filtering
in a traditional firewall. Hence, the HIP-based
firewall architecture can scale well on middle-
boxes and migitates most of the processing cost
at the end-hosts.

Figure 4. Connection tracking data model. Arrows represent pointer references between data
structures

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 89

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

In addition to latency, we measured also
throughput with TCP. The clients streamed 1
minute of TCP stream from the server through
the firewall. We used “iperf” tool with default
options for the measurements and varied the
number of simultaneous file transfers. The
results in Figure 6 indicate that the firewall did
not affect TCP throughput significantly in our
testing environment. The difference between
HIP-based and non-HIP-based TCP throughput
was approximately 2 Mbit/s.

We also measured TCP data transfer per-
formance under two DoS scenarios and a under
third scenario without DoS. In the first scenario,
there was 1-4 rogue initiators that were flooding
the responder with I1 packets while there was
a data transfer in process from the server to
the client. The second scenario was similar as
first one, but the initiators were using a forged
HIT that allows I1 traversal through the ACLs
of the firewall. The third scenario includes
throughput of varying number of simultaneous
and legimitate data transfers. The results are
show in Figure 7.

The two DoS attack scenarios have the
same throughput performance. With random
HITs, the I1 packets of the attackers stop at
the firewall. With forged HITs, the firewall ac-
cepts the I1 packets of the attackers and they
arrive at the responder. However, this causes
insignificant processing cost at the responder
because the responder has precreated a spool
of R1 packets.

I1 flooding slowly degrades TCP through-
put, but the throughput with multiple attackers
and single legimitate transfer was still larger than
with multiple, legimitate TCP data transfers.
For example, data transfer with four attackers
offered a performance of 29 Mbit/s, where as five
simultaneous legimitate data transfers offered
18 Mbit/s. We assume that this was affected
by the small size (40 bytes) of I1 packets. TCP
packets are much larger and therefore multiple
TCP streams reduce the throughput more than
smaller I1 packets.

As a summary, the results are quite promis-
ing. The overhead of the firewall is negligible,
both with control and data traffic. However,
we realize that it would be useful to repeat the

Figure 5. TCP connection establishment time

 64

 64.5

 65

 65.5

 66

Verify both HIsVerify initiator HIVerify only HITs

m
s

90 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

measurements with a larger number of attackers
and in gigabit networks.

Discussion

The firewall implementation presented in this
paper is scalable according to our measure-
ments. However, we have identified a number
of other challenges. The use of flat identifiers

for access control introduces side-effects for
identity and network management.

Additional Security Issues

The HIP base exchange establishes security
associations and keying material between two
end-hosts. The firewall tracks the SPIs of the
ESP packets. An attacker can thus send ESP
packets with valid SPIs through the firewall.

Figure 6. Throughput of simultaneous data transfers

Figure 7. Simultaneous flooding and data transfers

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 91

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Naturally, the end-hosts discard these packets,
but this introduces a possibility of flooding
attacks directed towards the end-hosts. These
issues are discussed in more detail in (Heer et
al., 2009).

Multiple Identities per Host

A HIP-enabled operating system can support
multiple Host Identities (Karlsson, 2005). One
practical problem arises from the fact that users
may have multiple affiliations, and also may
want to use anonymous identifiers for privacy
reasons.

The privacy management problem has been
tackled by introducing a privacy management
interface for MAC, IP and HIP layers (Lindqvist
and Takkinen, 2006). A user can choose whether
the identifiers in these layers are anonymous or
public. However, this requires user expertise,
and we cannot assume that all users can make
decisions on this.

The complexity of the issue arises from the
possibility to have multiple public identifiers.
Typically, client side network applications do
not care about the source identifier and just
select the first one from the stack. The problem,
in this case, is that an application can choose
an identifier that is not configured to a firewall
that protects the network. A tempting solution
for the user is to communicate all identifiers to
the firewall administrator, but this violates the
privacy of the user as part of the identifiers are
anonymous. In order to solve this, the client
host has to have a local policy to enforce the
selection of the correct source identifier for a
given destination identifier.

Rulesets

A typical firewall today includes a rather large
and complex set of filtering rules and setting up
this ruleset is a challenging task. One problem
is that one rule may be overlap with another. A
service may be blocked due to a new badly for-
matted rule. Rules may leave unwanted access
open in the firewall. Serious consequences may

occur if the firewall rules are set up accidentally
in a wrong order.

Typically, the outcome is that either certain
service become out of reach of users because
the administrator made a small change in the
existing ruleset, or the firewall fails not filter
all the intended traffic. Moreover, if users need
access to additional services, inside or outside
the firewall, an administrator must manually
make a change in the rules; typically this is
a long road, and the company security policy
may not even allow it.

With our firewall design, rulesets is rather
simple and supports mobile clients and renum-
bering of entire networks. Each client has a fixed
firewall rule indepently of the physical location
of the client. The rules of compromised clients
can be revocated indepently of other clients.
This allows also better protection against at-
tacks internal to the corporation.

Management Issues

Although the HIP firewall can reduce admin-
istration effort, for example, with network
renumbering, the management of HIs can be
cumbersome. Further work is needed to find
out ways how the public keys are introduced
to the firewall. With HIP, the end-host creates
and manages its own private keys. A problem
in this approach is how to submit the public
keys to the administration of the firewall. Next,
we present two straw-man solutions to clarify
the problem.

In the first solution, the administration is
responsible for the installation of the operating
system for e.g. a laptop. This is the usual case
in many enterprise settings. However, granting
access to the private key of the end-host intro-
duces a possibility for privacy violations.

In the second solution, the user creates its
own public/private key pairs, but the problem
here is that how the keys are communicated to
the firewall in a trustworthy way. Perhaps the
user could hand the right key on a USB stick to
administratation, but that is rather cumbersome
in networks with thousands of users. Hence,
a network-based transfer with a user-friendly

92 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

interface would seem more scalable here. An
enterprise network could adopt a similar way
to configure the HIP firewall as the EasyVPN
(Benvenuto & Keromytis, 2003) approach.
The EasyVPN approach uses a WWW server
and TLS connections for configuring IPsec
VPN gateways to clients. For HIP-enabled
firewall, a similar management system could
be implemented.

Another problem is that the identifiers
in HIP are flat. IP addresses are hierarchical
and contain a network prefix, which can be
used for grouping IP addresses. There is no
similar mechanism for the flat public key
based identifiers in HIP. Public keys matching
a certain pattern are computationally difficult
to create and might potentially introduce further
security problems.

One additional drawback of the current
architecture is that it does not support easy
grouping of services and administrators require
a high-level management interface. The firewall
implementation provides an interface that al-
lows extending the management to e.g. web
based management interface. The management
interface could be used to attach semantic data
to the flat identifiers. The data could consist of
groups, user names and expiration dates for
access control.

Combined Firewall and
Rendezvous Service
for Mobile Nodes

We have presented a solution where the firewall
requires being located on the path. When a mo-
bile host moves outside of the corporation, the
firewall cannot filter its traffic anymore. NAT
traversal extensions for HIP (Komu et al., 2009)
introduce a new type of rendezvous service that
forwards all HIP control traffic. Such service
could be used to implement off-path filtering
when a firewall service is coupled with the new
rendezvous service. The mobile hosts would just
have to deny all incoming base exchanges from
other hosts than the new rendezvous server. This
type of firewall would protect also communica-
tions for a mobile node that moves e.g. from

an enterprise network to an public network at
the cost of triangular routing.

Conclusion

We have presented a firewall architecture that
allows both users to benefit of end-to-end
mobility and multihoming in a secure way and
allows the enterprise network management
to centrally enforce their corporate network
security policies.

Our initial measurements indicate that the
overhead introduced by the firewall architec-
ture is relatively small as the existence of the
firewall in the network adds a delay of under 1
ms. The approach does not require an additional
firewall control protocol when both the client
and server support HIP. Despite that the HIP
architecture seems promising for establish-
ing the identifier/locator split to the Internet
and providing seamless secure mobility and
multihoming, it is not without tradeoffs. The
management of the flat identifiers used in HIP
introduces new challenges to operating systems
and network management. We have proposed
and implemented viable approaches to solving
these problems. The possibility to use public
keys as secure service identifiers and crypto-
graphically secure authentication provided by
our architecture is not available in the current
Internet architecture or previous proposals.

Acknowledgment

The authors thank Sanna Liimatainen, Laura
Takkinen, Kristian Slavov, Samu Varjonen and
Antti Ylä-Jääski for their comments on the paper.
The authors are also grateful to N. Asokan for
fruitful discussions and suggesting the service
identifier approach.

References

Aura, T., Roe, M., & Mohammed, A. (2005). Expe-
riences with host-to-host IPsec. Security Protocols,
13th International Workshop.

International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010 93

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Benvenuto, M. C., & Keromytis, A. D. (2003).
EasyVPN: IPsec Remote Access Made Easy. 17th
USENIX Large Installation Systems Administration
(LISA) Conference.

Candolin, C., Komu, M., Kousa, M., & Lundberg, J.
(2003). An implementation of HIP for Linux. In Proc.
of the Linux Symposium 2003, Ottawa, Canada.

Casado, M., Garfinkel, T., Akella, A., Freedman,
M. J., Boneh, D., McKeown, N., & Shenker, S.
(2006). Sane: A protection architecture for enter-
prise networks. In Proc. of 15th USENIX Security
Symposium.

Heer, T., Hummen, R., Komu, M., Götz, S., & Wehrle,
K. (2009). End-host authentication and authorization
for middleboxes based on a cryptographic namespace.
In ICC2009 Communication and Information Systems
Security Symposium.

Ioannidis, S., Keromytis, A. D., Bellovin, S. M.,
& Smith, J. M. (2000). Implementing a distributed
firewall. In Proceedings of the 7th ACM conference
on Computer and communications security.

Jokela, P., Moskowitz, R., & Nikander, P. (2008).
Using the encapsulating security payload (ESP)
transport format with the host identity protocol
(HIP). RFC 5202, IETF.

Jokela, P., Nikander, P., Melen, J., Ylitalo, J., &
Wall, J. (2003). Host identity protocol: Achieving
IPv4 - IPv6 handovers without tunneling. In Proc.
of Evolute workshop 2003: “Beyond 3G Evolution
of Systems and Services

Karlsson, N. (2005). Enabling Multiple HIP Identi-
ties on Linux. Master’s thesis, Helsinki University
of Technology, Telecommunications Software and
Multimedia Laboratory.

Kitamura, H. (1999). Entering the IPv6 communica-
tion world by the SOCKS-based IPv6/IPv4 Transla-
tor. In Proc. of INET99.

Komu, M., & Henderson, T. (2008). Basic Socket
Interface Extensions for Host Identity Protocol
(HIP). IETF.

Komu, M., Henderson, T., Tschofenig, H., Melen,
J., & Keranen, A. (2009). Basic hip extensions for
traversal of network address translators.

Laganier, J., & Eggert, L. (2008). protocol (HIP) ren-
dezvous extension. RFC 5204, IETF. Host identity

Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas,
D., & Jones, L. (1996). Socks protocol version 5.
RFC 1928, IETF.

Lindqvist, J., & Takkinen, L. (2006). Privacy man-
agement for secure mobility. In Proceedings of the
5th ACM CCS Workshop on Privacy in Electronic
Society.

Lindqvist, J., Vehmersalo, E., Komu, M., & Manner,
J. (2007, June 17-22). Enterprise Network Packet Fil-
tering for Mobile Cryptographic Identities (extended
abstract). In USENIX annual technical conference
poster session, Santa Clara, CA.

Moskowitz, R., & Nikander, P. (2006). Host Identity
Protocol Architecture. RFC 4423, IETF.

Moskowitz, R., Nikander, P., Jokela, P., & Hender-
son, T. (2008). Host identity protocol. RFC 5201,
IETF.

Nikander, P., Arkko, J., Vogt, C., & Henderson, T.
(2008). End-Host mobility and Multi-Homing with
the host identity protocol. RFC 5206, IETF.

Nikander, P., & Laganier, J. (2008). Host identity
protocol (HIP) domain name system (DNS) exten-
sion. RFC 5205, IETF.

Nikander, P., Ylitalo, J., & Wall, J. (2003). Integrat-
ing security, mobility, and multi-homing in a HIP
way. In Proc. of Network and Distributed Systems
Security Symposium (NDSS’03), San Diego, CA,
USA. Internet Society.

Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J.,
Ratnasamy, S., Shenker, S., et al. (2005). OpenDHT:
A public DHT service and its uses. In Proc. of ACM
SIGCOMM’05, Philadelphia, PA, USA: ACM
Press.

Stiemerling, M., Tschofenig, H., Aoun, C., & Da-
vies, E. (2008). NAT/Firewall NSIS Signaling Layer
Protocol (NSLP).

Tschofenig, H., Nagaraja, A., Shanmugam, M.,
Ylitalo, J., & Gurtov, A. (2005a). Traversing
Middleboxes with Host Identity Protocol. In Proc.
of ACISP’05.

Tschofenig, H., Nagarajan, A., Torvinen, V., Ylitalo,
J., & Grimminger, J. (2005b). NAT and firewall
traversal for HIP: draft-tschofenighiprg-hip-natfw-
traversal-02.

van Rooij, G. (2000). Real Stateful TCP Packet Filter-
ing in Ipfilter. 2nd International SANE Conference,
Maastricht, The Netherlands.

94 International Journal of Handheld Computing Research, 1(1), 79-94, January-March 2010

Copyright © 2010, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Vehmersalo, E. (2005). Host Identity Protocol
Enabled Firewall - A Prototype Implementation
and Analysis. Master’s thesis, Helsinki University
of Technology, Telecommunications Software and
Multimedia Laboratory.

Walfish, M., Stribling, J., Krohn, M., Balakrishnan,
H., Morris, R., & Shenker, S. (2004). Middleboxes
no longer considered harmful. In Proc. of the 7th
USENIX Symposium on Operating System Design
and Implementation (OSDI 2004), San Fransisco,
CA, USA: ACM Press.

Ylitalo, J., Salmela, P., & Tschofenig, H. (2005).
SPINAT: Integrating IPsec into Overlay Routing.
In First International Conference on Security and
Privacy for Emerging Areas in Communication
Networks.

Sams. Janne Lindqvist is a specialist researcher and PhD candidate with the Department of
Computer Science and Engineering of Helsinki University of Technology (TKK). He received
his MSc (Tech) on February 2005 from TKK. He will publicly defend his doctoral thesis on
Practical Privacy Enhancing Technologies for Mobile Systems on June 5, 2009. His research
interests are in systems security and privacy, especially in building secure, privacy-preserving
and usable systems.

Essi Vehmersalo is a senior software engineer working at Nokia Corporation. She received her
MSc in computer science from the Helsinki University of Technology (TKK) 2005 with thesis
topic related to Host Identity Protocol enabled firewall technology. After that she has worked on
mobility solution of the networking middleware of S60/Symbian smart phone platform. Currently
she is working on Nokia music service.

Miika Komu graduated as MSc on 2004 and he is working on his postgraduate studies at Helsinki
University of Technology. He is affiliated as a researcher at Helsinki Institute for Information
Technology. He has been participating to various HIP related research, engineering, standard-
ization and deployment activities since 2001.

Jukka Manner (born 1972) received his MSc (1999) and PhD (2004) degrees from the University
of Helsinki. He is a full professor (tenured) and holds the chair of networking technology at the
Department of Communications and Networking (Comnet) of the Helsinki University of Technol-
ogy (TKK). He is also Adjunct Professor and a senior researcher at the University of Helsinki,
and contributes to the research at the Helsinki Institute for Information Technology (HIIT). His
research and teaching focuses on development of a future Internet, particularly in topics related
to networking beyond IP, energy efficiency, mobility management, QoS, and transport protocols.
He is the Academic Coordinator for the Finnish Future Internet research programme. He is an
active peer reviewer and member of various TPCs. He has contributed to standardization of
Internet technologies in the IETF for over 10 years, and is currently the co-chair of the NSIS
working group. He has been principal investigator and project manager for over 15 national
and international research projects. He has authored over 50 publications, including several
IETF RFCs. He is also a member of the IEEE.

Publication V

Miika Komu and Janne Lindqvist. Leap-of-Faith Security is Enough for

IP Mobility. In Consumer Communications and Networking Conference

(CCNC’09), Proceedings of the 6th IEEE Conference on Consumer Com-

munications and Networking Conference, Las Vegas, pp. 830-834, ISBN

978-1-4244-2308-8, February 2009.

c© 2009 IEEE.

Reprinted with permission.

167

Leap-of-Faith Security is Enough for IP Mobility
Miika Komu

Helsinki Institute for Information Technology
Helsinki University of Technology and University of Helsinki

Email: miika.komu@iki.fi

Janne Lindqvist
Helsinki University of Technology

Department of Computer Science and Engineering
Email: janne.lindqvist@tml.hut.fi

Abstract— Host mobility presents a challenge for security pro-
tocols. For example, many proposals exist for integrating IPsec to
Mobile IP. However, the existing approaches are cumbersome to
configure and contain many round trips for security and mobility
updates. The Host Identity Protocol (HIP) is being developed
in the IETF to provide secure host mobility and multihoming.
The default way to operate the protocol is that the connection
initiator knows the peer’s public key or a hash of the public key.
This requires either infrastructure support or pre-configuration
which introduces difficulties for deploying the protocol. In this
paper, we present an implementation and evaluation of HIP
that creates leap-of-faith security associations. The implemented
approach establishes end-to-end security without requiring any
new infrastructure to be deployed. We argue that since worldwide
PKI is nowhere near, and seems to nearly impossible to br deploy
in practice, leap-of-faith security is enough for Internet access
and mobility. In our view, the deployment of opportunistic HIP
even makes the deployment of DNSSEC unnecessary for most
applications.

I. INTRODUCTION

In the vast number of approaches to host mobility, many of
the proposals ignore security issues. For example, extensively
researched Mobile IP(v6) protocol introduces difficulties with
IPsec [1].

Host Identity Protocol [2] integrates to IPsec to secure
mobility and multihoming. In the HIP architecture, the IP
addresses are relieved from their role as identifiers by public
keys or hashes of the public keys. When the IP address
of the host changes, the connection is still bound the the
same cryptographically secure identity. Thus, transport layer
connections can tolerate changes in IP addresses using HIP.

In Mobile IPv6, the server side does not need any changes,
but it can support mobility optimizations. The security of
Mobile IPv6 was designed to avoid introducing any new
security threats to the Internet [3]. Mobile IP uses IP address
as the identifier. On the other hand, Host Identity Protocol was
designed to introduce a new cryptographic identity space for
Internet and to use IPsec as the default mechanism to protect
transport layer communication.

The concept of leap-of-faith security or weak authentication
between untrusted principals [4] has been used and imple-
mented in many security protocols. For example, Secure Shell
(SSH) protocol uses leap-of-faith security as as follows. When
a client connects to a server the first time, the user sees and
verifies the fingerprint of the server’s public key, and the SSH
software stores the public key to disk. Next time the client
connects to the server, the SSH client software compares the

server key to the one stored on the disk. If they do not match,
SSH alerts the user of a possible man-in-the-middle attack.
Thus, the assumption of the leap-of-faith security is that there
is no active attacker in the network during the first connection.

In this paper, we present the design and implementation of a
leap-of-faith security approach to HIP called the opportunistic
mode. The opportunistic mode is briefly described in the base
specification of HIP, but, for example, API issues are left aside.
The literature does not contain any experimental results on
opportunistic mode and therefore we have experimented with
a way of of implementing the opportunistic mode and its APIs
which do not interfere with the normal operation of HIP. The
implementation supports incremental deployment because it
allows fallback to non-HIP based communication when the
peer does not support HIP. We argue that the opportunistic
end-to-end security approach is enough for Internet access
for heterogeneous wired and wireless networks since the
deployment of global public-key infrastructure is virtually
impossible. It should be noted that AAA architectures are
beyond the scope of this paper, since we focus on end-to-end
security. We have implemented the approach with HIP, but
the same experiences should be applicable to other end-to-end
mobility protocols.

The rest of the paper is organized as follows. We first
proceed to introduce the Host Identity Protocol architecture.
Then, we discuss related work. Next, we give the design and
implementation details, followed by discussion section. We
finish the article in conclusions.

II. HOST IDENTITY PROTOCOL

Host Identity Protocol (HIP) [2] introduces a new global
namespace, the Host Identifier (HI) namespace, for transport-
layer connections. The namespace separates transport layer
and network layer locators. This allows transport layer con-
nections to survive when the network-layer address changes
due to end-host mob5Bility or multihoming. The new global
namespace makes it also possible to name and contact hosts
behind private-address realms controlled by NAT boxes [5].

The HIP namespace is unmanaged in the sense that no
central authority for creating the names exists. A name in
the namespace is statistically unique. Namespace collisions
are highly unlikely due to the size of the addresses space
which corresponds to the IPv6 address space. The namespace
is cryptographic by its nature; a HI is essentially a public key.

IPv4 API IPv6 API

Ethernet

HIP

HIP API

IPv6

TCP UDP

Socket

Application
Application

Transport
Layer

Layer

Layer

HIP
Layer

Network
Layer

Link
Layer

IPv4

Fig. 1. HIP layering and naming architecture

Forging of such names is very difficult. In addition, HIs can be
used for strong end-to-end and end-to-middle authentication.

Public keys can be of variable length and longer keys
cannot be used as socket endpoints in the existing sockets
API [6]. To be able to pass public keys through the current
sockets API with existing applications and networking stacks,
HIP employs two shorter, fixed-size presentations of public
keys. The shorter representations are also used in the protocol
messages to ease protocol encoding and to reduce the length
of control messages. First, Host Identity Tag (HIT) is a hash of
the public key. The HIT has a fixed 28 bit prefix to separate it
from routable IPv6 addresses. Second, Local Scope Identifier
(LSI) is an identifier that can fit into an IPv4 address to support
IPv4-only applications and is valid only in the context of the
local host [7].

The HIP namespace requires a new layer in the networking
stack to handle translation between HIs and routable addresses
(i.e. locators). The new layer is located between transport and
network layers, and it translates HIs to locators and vice versa.
The HIP layer can map a HI either to an IPv4 or IPv6-based
locator dynamically as illustrated in Figure 1.

Typically, a user inputs the client application the server
host name and service name. Then, the system resolver trans-
lates these names to their machine readable representations.
Effectively, the resolver searches the host name from DNS
and returns the corresponding IP address(es) and numerical
service port number. The address information may also also
the HITs of the server if they were found from DNS. When the
application connects to a HIT, this triggers a base exchange
between the hosts. Upon successful completion, IPsec ESP [8]
secures the application data between the client and server.

HIP uses IPsec Encapsulated Security Payload (ESP) to
secure and encrypt communication between two hosts [8].
However, before IPsec can be used, the hosts need to create
shared secret keys with each other. The procedure to create
the keys in HIP is called the base exchange [9] and it is
illustrated in Figure 2. The base exchange is a four way
Diffie-Hellman key exchange during which hosts negotiate
the IPsec keys and algorithms, and learn each others public
keys. All base exchange messages, except the first one, are
signed with DSA or RSA private keys to protect the integrity
of the messages. The initiator starts the base exchange with
an I1 message that does not contain any signature to prevent
DoS attacks that try to trick the responder to consume its

R1: puzzle, D−H, key, signature

I1: trigger base exchange

I2: puzzle solution, D−H, key, signature

R2: signature

P

I

I
T
I
A

T
O
R

R
E
S

O
N

D
E
R

N

Fig. 2. HIP base exchange

time in verifying signatures from unauthenticated initiators.
Normally, the I1 message would contain the responder’s HIT
(HIT(R)), but in opportunistic mode, the HIT(R) field is empty.
Responder replies with an R1 message that contains always the
responder’s HIT. It includes also responder’s public key and a
computational puzzle. The puzzle protects the responder from
denial of service attacks because the responder can increase
its difficulty when it is under attack. The initiator solves the
puzzle and responds with a signed I2 message that contains
also the initiator’s public key. The responder receives the I2
and validates the puzzle and other parameters, and concludes
the base exchange with the R2. After this, both hosts have
authenticated each other and have established keys for ESP
protected application data transfer.

HITs are problematic from the viewpoint of DNS which
supports only hierarchical identifiers. HITs are flat in the sense
that they do not contain any hierarchical information. For this
reason, resolving a HIT to a hostname or IP address using
the currently deployed DNS is impossible. There are at least
two scenarios where this can be a problem. First, a problem
can occur e.g. when a server receives a connection from a
HIT of a client and tries to verify the HIT from DNS. An
example case of this are IRC servers that typically try to check
the client information with a reverse DNS query and force
the IRC connection to timeout when the check fails. In the
second case, which is referred to as the referral problem, an
application can communicate the HIT of its peer application
to a third application running on some other host. The host of
the third application may not have any means to route packets
to the HIT because the host cannot resolve the HIT to an IP
address using DNS. For example, FTP supports this kind of
behaviour [6]. In such a case, it is possible to use an overlay
to store and retrieve HIT-to-IP mappings, or use the overlay
to route the packets without any IP address information at the
end-hosts [10].

Basic mobility in HIP is based on a moving host always
informing its peers on its new location using a signed message.
Each peer then verifies that the message is from the authentic
host and authentic location before sending any ESP traffic to
the new location. During the verification procedure, which is
called as the return routability test, the peer effectively sends
a signed nonce to the host in the new location. Then, the host
in the new location signs the nonce with its own public key
and sends the nonce back. This way, the hosts can authenticate

handovers and the return routability test protects against replay
attacks.

III. RELATED WORK

In this section, we describe different leap-of-faith security
approaches that, however, do not provide global Internet-wide
mobility and multihoming.

Koponen et al. [11] have proposed suspend-mode mobility
for SSH and TLS. Their approach is based on the assumption
that suspend and resume activity for laptops is the usual case
for mobility, and that host mobility in Mobile IP and HIP mod-
els is not needed. As a counter argument, it is perceivable that
deployment of heterogeneous networks necessitates mobility
as supported by HIP or Mobile IP. Koponen et al’s approach
is applicable only to SSH-based connections. In contrast, our
approach supports both unmodified legacy applications and
also UDP-based network communication.

RFC4322 [12] describes opportunistic encryption for IKE.
The idea in the RFC is to distribute public keys in the DNS
and use DNSSEC [13] to protect against active attacks [12]. If
DNSSEC is deployed, our opportunistic security approach can
also leverage it. A benefit of the approach is that it does not
require new Resource Record fields to the DNS. A drawback is
that the approach does not support mobility and multihoming.

An approach for implementing early opportunistic key
agreement for ad hoc networks is described by Candolin et al
in [14]. The approach is based is to utilize ICMP to establish
IPsec security associations that can be used to secure e.g.
neighbor discovery. The drawback of the approach is that it
does not support global host mobility.

IV. IMPLEMENTATION

This section presents the implementation design of our leap-
of-faith security approach and performance tests.

A. Design

We have implemented opportunistic mode in HIP for Linux
implementation. We implemented the opportunistic mode as an
interposition library that intercepts socket calls and translates
IP addresses to HITs as shown in Figure 3. The library
supports legacy applications because it does not require any
modifications to the source code of applications.

A developer, system administrator or user can use the library
using two methods. In the first method, a developer links
the source code of an invidual application to the library. The
second method, dynamic linking, is easier for administrators
and users, and does not require access to the source code.
Dynamic linking means that the user or administrator enables
the library dynamically using LD PRELOAD environment vari-
able. This can be done with different granularities, such as
per application, per user or per system, depending on security
requirements. The different granularities can also be used to
avoid the overhead of introduced by security. To reduce the
configuration steps for users, the opportunistic mode should
be provided at system level. Both client and server-based

libc6

sockets

opp.library

application

transport

network

ipsec

userspace

HIP

daemon

kernespace

hostname

IP

HIT

HIT

HIT

SPI

IP

Fig. 3. Layering and Software Module Organization

client app opplib ipsectransport

2. request HIT

1. blocking connect(IP)

6. connect(HIT)

5. response HIT

7. IPsec

3. I1

4. R1

responder
hipd
initiator

hipd

Fig. 4. Flow Diagram of Opportunistic Base Exchange

applications can use the library, although we believe that it
is more beneficial to client applications.

The process of the opportunistic handshake is illustrated
in Figure 4 from the viewpoint of an initiator. In step 1,
the application calls a socket API function that sends data
using IP addresses, for example connect() or sendto(). The
opportunistic library then intercepts the function call. In step
2, the library (denoted as opplib in the figure) queries the HIP
daemon for the corresponding HIT. The query blocks until
the HIP daemon responds. The daemon triggers opportunistic
base exchange with the peer in step 3. Upon receiving the R1
in step 4, the HIP daemon sends the responder’s HIT to the
library in step 5 and proceeds with the base exchange. Now,
the opportunistic library can proceed with the translation and
connect to the HIT of the responder in step 6. Finally, the
control flow proceeds from transport to IPsec layer processing
in step 7, which transmits the data over ESP.

The library consists of roughly 2000 physical lines (SLOC)
of C code. It does not translate raw sockets or sockets that
are already bound to HITs and it can translate both IPv4 and
IPv6 addresses to HITs. It creates a completely new HIT-based
socket for each IP-based socket because the sizes of IPv4 and
IPv6 addresses are different.

The library processes datagram-oriented (UDP) socket calls
differently from connection-oriented (TCP) socket calls. With

datagrams, the local or peer address can change at any point
of the communication and may require a new HIP base
exchange. To avoid unnecessary base exchanges, the library
caches the address-to-HIT translation for a specific socket until
the application changes the peer address and only then triggers
a new opportunistic base exchange to discover the HIT of the
peer.

The opportunistic mode was mostly implemented within the
library, but it also required some changes to the existing HIP
daemon. The changes in daemon were minimal to implement
the responder processing. Namely, the responder just selects a
local HIT for R1 when the destination HIT of the I1 is NULL.

The initiator part of the daemon required to store state
information related to opportunistic connections in the HIP
association database. The database stores the state of HIP
base exchanges and it is indexed using HITs of the initiator
and responder. The I1 packet has an empty destination HIT
in opportunistic mode and when the daemon accesses the
database for such a packet, it does not use a blank destination
HIT to index it. Instead, the daemon calculates a “pseudo HIT”
based on the HIT prefix and the IP address of the responder.
This avoids mixing up multiple simultaneous opportunistic
base exchanges and protects against active attackers that try to
send R1 packets to the initiator from other network addresses.
It should be noticed that the daemon skips the pseudo HIT
generation if it finds existing HIP association with the peer
and returns the peer HIT immediately.

The implementation supports fallback to plain TCP/IP based
on timeouts when an initiator detects that the peer does not
support HIP. The daemon resumes the blocked library when
it does not receive an R1 during a certain period of time.
The library then discards the translation step and proceeds
with unprotected communication using the original IP address.
The implementation caches the addresses of the peers that
did not support HIP to avoid triggering the base exchange
unnecessarily again. The daemon flushes cache entries upon
two events. First, this occurs when the HIP association closes
or expires. Second, this occurs when local or peer host moves.
Local host movement causes flushing because it might move
between NATted realms that have overlapping private address
spaces. Peer host movement address causes flushing because
the previous IP address of the peer could be occupied by a
new host and new connections to this IP should be directed
to the host that presently occupies the address.

B. Performance

We evaluated the performance of the opportunistic mode on
two 64-bit 2 GHz Intel Dual Core computers running Ubuntu
8.04. The machines were connected to each other using a
direct 1 Gbit link. We used 1024-bit RSA asymmetric keys
as HIs. We employed 128-bit AES keys for HIP and ESP
encryption and 160-bit SHA1 keys for IPsec authentication.
The linux kernel version of the computers were 2.6.25.8 and
included BEET [8] patches for ESP that were adopted as part
of the standard linux kernel in an upstream kernel version. The

standard deviations were relatively small the measurements
and therefore they are not included in this section.

We observed an average 47 ms delay for an application
complete TCP connect() call to a HIT, which consists of the
time to complete the base exchange and the TCP handshake.
The delay was roughly the same with the opportunistic library.
However, we experienced a minimum of three 3 seconds with
each LSI measurement. The reason for this is that the LSI
implementation does not yet cache data packets that the host
sends during the base exchange. Instead, it just drops the
packets. The Linux TCP stack includes fixed three second
retransmission timeout by default when the first TCP packet is
lost. The same behavior does not occur in the current library
implementation because it blocks the socket calls and therefore
no packets are actually lost.

The RTT between the two machines was 0.261 ms with
plain ICMPv4, 0.319 ms using HITs and 0.658 ms with
LSIs. We did not measure RTT with the opportunistic library
because it does not support translation of raw sockets yet. Iperf
version 2.0.2-4 showed a throughput of 942 Mbits/s for plain
TCP, 300 Mbits/s for HIT-based TCP connection, 296 MBits/s
for the opportunistic HIP library and 94 MBits/s for LSI-based
connection. We assume that the LSI throughput was so low
because the implementation is highly unoptimized.

We tested the opportunistic library in a mobility scenario
where a TCP-based test application running on a local host
created a connection to a peer application residing on a remote
host. Then, we forced the local host to change its IP address
to a new one while the TCP connection was still active. As
a result, the TCP connection survived because of the HIP
handover and local application was still able to send data to
the peer application. The connection survived even though the
local application was bound to the old IP address because the
library was still translating the old address to the HIT.

V. DISCUSSION

Our performance measurements indicate that the library
offer the same performance as HIT based data transfers. The
library exceeded the performance of the LSI implementation
because it is still very unoptimized.

We observed that an opportunistic base exchange was typi-
cally invoked twice for the first connection of an application.
The reason for this was that all of the library calls were
wrapped, including also the DNS query. The DNS query
triggered the first base exchange and the connection to the
peer application triggered the second. This could be avoided by
caching the IP addresses in the implementation, or by setting
up by-pass policies for DNS ports.

The library requires further experimentation with varying
kind of applications and environments. We have successfully
tested it with the Firefox web browser, iperf and some other
simple applications that create network connections in simple
fashion. We are in the process of experimenting the library
with a wider range of networking applications, such as real-
time applications.

We are still improving the library implementation to meet
some additional challenges. For example, we would like the
library to support non-blocking operation. Also, the library
does not yet cover all possible socket calls even though it
handles the most common ones. We have also experienced that
LD PRELOAD was difficult to apply in some systems, such as
CentOS 5.2 and Maemo tablets. For such systems, we suggest
to apply the opportunistic mode as explained in [15].

Opportunistic HIP requires a relaxed security model in
terms of leap of faith or time. It makes two security-related
assumptions. The first assumption is that a remote host cannot
guess the time when the initiator sends the I1 and reply using
its own R1. The second assumption is that an attacker can
snoop the trigger but cannot reply using its own R1. Typically,
packet snooping is quite easy in e.g. wireless networks which
makes the opportunistic mode especially vulnerable in such
kind of broadcast environment. However, this quite difficult
in practice because the attacker has to forge its address as
the destination address of the I1 trigger and to be able to
respond from this address. The opportunistic mode is a “better
than nothing” security guarantee until sufficiently amount of
HIP infrastructure is deployed on the Internet. We believe that
heterogeneous wired and wireless networks cannot support a
global PKI in any case.

The fallback approach, however, could introduce the possi-
bility to attack the base exchange by down-negotiation. The
attacker (middleman) can just drop the I1 packet. The initiator
now sends e.g. a TCP SYN to the Recipient and the middleman
catches it, and establishes connections to the initiator and the
responder. This way, the middleman does not need to use any
cryptographic operations to catch the traffic. However, this
attack can be mitigated by security policies in the end-hosts,
for example, by not allowing unencrypted connections.

In addition to attackers, packet loss could also be a problem
with the fallback approach. The problem with the fallback is
that it is based on timeouts. The timeout has to be long enough
to provide reasonable guarantee against packet losses, but, on
the other hand, long timeouts frustrate the user. Long timeouts
could be avoided using explicit detection of HIP capability of
the peer in a backwards compatible way as described in more
detail in [16].

There are different pros and cons in using different kind
of identifiers at the application layer, we do not see HITs,
LSIs and opportunistic IP identifiers as rivalling or conflicting
approaches. On the contrary, they complement each other to
support different kinds of applications. However, a system
should provide some kind of default policy for selection
among different kinds of identifiers. For the default policy, we
suggest that the application first try to resolve HIs of the peer.
This is required for forwards compatibility with PKI. When
the application supports IPv6 through the system resolver,
the resolver returns the HIT of the peer to the application.
When the application supports only IPv4, the resolver returns
an LSI instead. This way, the application can detect the
presence of HIP. It then tries the opportunistic mode as the
last option, i.e., when the resolver returns just an IP address

to the application in the absence of a HI. For backwards
compatibility, the opportunistic library should fall back to non-
HIP communication when the peer does not respond with an
R1 during certain period of time.

VI. CONCLUSIONS

We have presented the design and implementation of a
leap-of-faith end-to-end security architecture for host mobility.
Our implementation allows legacy applications to establish
IPsec security associations and change their points of network
attachment without losing connectivity. One of the major
advantages of our architecture is the backward compatible
implementation of leap-of-faith security as the hosts can fall
back to plain TCP or UDP connections when a peer does
not support HIP. Hosts benefit from secure mobility, assuming
that an active attacker cannot mount a man-in-the-middle
attack in the beginning of the communication. We showed
that our approach is sufficient to secure communication in
heterogeneous network environments in the lack of a global
PKI or DNSSEC deployment.

REFERENCES

[1] V. Devaparalli and F. Dupont, “RFC 4877: Mobile IPv6 Operation with
IKEv2 and the revised IPsec Architecture,” Apr. 2007.

[2] R. Moskowitz and P. Nikander, “Host Identity Protocol Architecture,”
IETF, RFC 4423, May 2006.

[3] T. Aura and M. Roe, “Designing the Mobile IPv6 Security Protocol,”
Annales des télécommunications / Annals of telecommunications, special
issue on Network and information systems security, no. 3-4, March-April
2006.

[4] J. Arkko and P. Nikander, “How to authenticate unknown principals
without trusted parties,” in LNCS 2845: Security Protocols, 10th Inter-
national Workshop, Apr. 2003.

[5] M. Komu, T. Henderson, P. Matthews, H. Tschofenig, and A. Keränen,
“Basic HIP extensions for traversal of network address translators draft-
ietf-hip-nat-traversal-04,” July 2008, work in progress, expires in Jan
2009.

[6] M. Komu, S. Tarkoma, J. Kangasharju, and A. Gurtov, “Applying
a Cryptographic Namespace to Applications,” in Proc. of the first
ACM workshop on Dynamic Interconnection of Networks (DIN 2005).
Cologne, Germany: ACM Press, Sept. 2005.

[7] T. Henderson, P. Nikander, and M. Komu, RFC 5338: Using the Host
Identity Protocol with Legacy Applications, Sept. 2008.

[8] P. Jokela, R. Moskowitz, and P. Nikander, “Rfc5202: Using the encap-
sulating security payload (ESP) transport format with the host identity
protocol (HIP),” IETF, RFC 5202, Apr. 2008.

[9] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson, “RFC5201:
Host identity protocol,” Apr. 2008.

[10] P. Nikander, J. Arkko, and B. Ohlman, “Host identity indirection
infrastructure (Hi3),” in Proc. of The Second Swedish National Computer
Networking Workshop 2004 (SNCNW2004), Karlstad, Sweden, Nov.
2004.

[11] T. Koponen, P. Eronen, and M. Särelä, “Resilient Connections for SSH
and TLS,” in USENIX Annual Technical Conference, May 2006.

[12] M. C. Richardson and D. H. Redelmeier, “RFC 4322: Opportunistic
Encryption using the Internet Key Exchange (IKE),” Dec. 2005.

[13] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “RFC 4033:
DNS Security Introduction and Requirements,” IETF,” RFC, Mar. 2005.

[14] C. Candolin, J. Lundberg, and P. Nikander, “Experimenting with early
opportunistic key agreement,” in Proceedings of Workshop SEcurity
of Communication on Internet, Internet Communication Security, Sept.
2002.

[15] T. Finéz, “Backwards compatibility experimentation with host identity
protocol and legacy software and networks,” Master’s thesis, Helsinki
University of Technology, Department of Computer Science, 2008.

[16] B. Bishaj, “Efficient leap of faith security with host identity protocol,”
Master’s thesis, Helsinki University of Technology, Department of
Computer Science, June 2008.

Publication VI

Kristiina Karvonen, Miika Komu and Andrei Gurtov. Usable Security Man-

agement with Host Identity Protocol. In Computer Systems and Appli-

cations (AICCSA’09), Proceedings of the Seventh ACS/IEEE International

Conference on Computer Systems and Applications, Rabat, pp. 279 - 286,

ISBN 978-1-4244-3807-5, May 2009.

c© 2009 IEEE.

Reprinted with permission.

175

Usable Security Management with Host Identity Protocol
Kristiina Karvonen Miika Komu Andrei Gurtov

Helsinki Institute for Information Technology
firstname.lastname@hiit.fi

ABSTRACT
Host Identity Protocol (HIP) proposes a change to the
Internet architecture by introducing cryptographically-
secured names, called Host Identities (HIs), for hosts.
Applications use HIs instead of IP addresses in transport
layer connections, which allows applications to tolerate host-
based mobility better. HIP provides IPsec-based, lower-
layer security, but the problem is that this type of security is
invisible for most applications and users. Our main
contribution is the implementation and user evaluation of
several security indicators which inform the user when HIP
and IPsec are securing the connections of the user. We
experimented with application and system level security
indicators at the client-side, as well as with server-side
indicators. In this paper, we present implementation
experience on integrating the identity management
Graphical User Interface (GUI) to HIP and results of
usability tests with actual users.

I. INTRODUCTION
A host and its location are identified using Internet
Protocol (IP) addresses in the current Internet
architecture. However, IP addresses can serve only as
short-term identifiers as a considerable amount of hosts
are portable devices and they change their IP addresses
when moved from one network to another. Short-term
identifiers disrupt long-term transport layer connections,
such as Internet phone calls, and make locating the peer
host more difficult. Impersonation attacks are possible
because IP addresses are relatively easy to forge.
The Host Identity Protocol (HIP) architecture [26, 23]
leverages a so-called identity/locator split to address these
challenges in an integrated approach. It separates the
identity of a host from its location as illustrated in Figure
1. The identity is called the Host Identity (HI) and it is
used as a long-term identifier on the upper layers of the
network stack. The location of host is bound to IP
addresses and used for routing packets to the host in the
same way as in the current Internet architecture.

The HI namespace consists of Host Identifiers, each of
which consists of the public key component of a private-
public key pair. Each host is responsible for creating one
or more public/private key pairs to provide identities for
itself. As the HIs are based on public-key cryptography,
they are computationally difficult to forge. HIs are
location-independent identifiers which allow a mobile
host to preserve its transport layer connections upon
changes in the network. On the other hand, the HI can be
used for looking up the current location of a host because

the HI is a long-term identifier. A client host obtains the
HI of a server typically from the DNS. However, the
infrastructure may not support this in certain scenarios,
such as in peer-to-peer and ad-hoc environments. In such
cases, opportunistic HIP can be used for contacting a peer
without prior information of the peer's identity.
Opportunistic HIP is based on a “leap-of-faith”, which
means that it is prone to man-in-the-middle attacks for the
initial connection. It is similar to SSH, where the client
caches the public key of the server after the first
successful connection.

There are many challenges in making HIP understandable
to the end users. As an example, users have developed an
automatic response to press “OK” to SSH software
prompts (meant to verify and accept the key) without
consulting the prompts properly, if at all [3]. This is due
to many prompts being uninformative to most users that
do not increase the user's security awareness even when
read [11]. As we implemented a prompting mechanism
for HIP-related connections using our publicly available
HIP Firefox2 add-on (available also as a firefox3
extension), we witnessed the same phenomenon.

Most Internet applications can run unmodified over HIP
[16], although only HIP-aware (new) applications
utilizing the extended socket interface [20] can take better
advantage of the new features provided by HIP. As HIP
secures application data traffic with IPsec that is located
logically "deep" within the networking stack, the
challenge is to provide proper and understandable
security indicators to the user to convince her that the
connection, e.g., to a banking web site, is secured. Such
indicators can be developed as extensions to applications
(e.g., a security add-on to Firefox browser) or within a
host-wide HIP management utility that controls all
applications.

When designing the security indicators, it is important to
decide how and when to apply users’ existing security
habits, and when to break them. For HTTPS, a browser
typically illustrates the access to a secure site by a
padlock icon or by changing the color of the address bar.
However, recent research has shown that these indicators
might be ineffective as they go unnoticed by most users
[31]. We experimented with the usability of the security
indicators with volunteers, who accessed and judged
security of web pages. Our first implementation prototype
and GUI (Fig.2) was targeted to and usability tested with
technical users who are assumed to be the first adopters

of HIP. Usability needs to be double-checked in later
phases of the development with non-technical users [2].

The rest of the paper is organized as follows. Section 2
gives background on HIP and usable security. Section 3
describes the implementation of our security model for
HIP. Usability evaluations are presented in Section 4,
followed by results and usability improvements in
Section 5. Section 6 concludes the paper with a summary
and plans for our future work.

II. BACKGROUND AND RELATED WORK
In this section, we compare the security mode provided
by Host Identity Protocol to the familiar model of
Transport Layer Security. A short overview of related
work on usability of network security completes this
section.
A. Host Identity Protocol
In HIP [26], IP addresses are used to route packets, but in
the upper parts of the stack the addresses are replaced
with Host Identifiers. These Host Identifiers form a new
Internet-wide name space for hosts. In HIP, each host is
directly identified with one or more public keys that each
corresponds to a private key possessed by the host. Each
host generates one or more public/private key pairs to
provide identities for itself.
For backwards compatibility with networking APIs,
applications use shorter representation of the HI. IPv4
applications use 32-bit Local Scope Identifiers (LSIs),
and IPv6 applications use 128-bit Host Identity Tags
(HITs). A HIT is constructed by calculating a digest over
the public key. A HIT binds the application to the public
keys used for the communications, which is referred as
channel binding.
The introduction of new end-point identifiers changes the
role of IP addresses. When HIP is used, IP addresses
become pure topological labels, naming locations in the
Internet. One benefit of this identity/locator separation is
that hosts in private address realms (behind NATs) can
name each other in a unique way with HITs [21]. A
second benefit is that the hosts can change their IP
address without breaking transport layer connections of
applications and rely on HIP to manage host mobility.
Thus, the relationship between location names and
identifiers becomes dynamic.
The problem of certifying the keys in Public-Key
Infrastructure (PKI) or otherwise creating trust
relationships between hosts has explicitly been left out
from the HIP architecture, as it is expected that each
system using HIP may want to take care of it in a
different manner. For mere mobility and multi-homing,
the systems can work without any explicit trust
management, in an opportunistic manner.

HIP uses IPsec as described in [6] to provide data
encryption and integrity protection for network

applications. Before two network applications can
communicate with each other using IPsec-protected
traffic, the underlying hosts authenticate each other and
negotiate encryption keys for IPsec using HIP [27].
B. Transport Layer Security
Transport Layer Security (TLS) provides security for
applications at the application layer. TLS is usually
supported by user-space libraries that provide an API for
the application to communicate securely with a peer
application.

When TLS is applied to existing legacy applications, it
requires always rewriting both client and server
applications. In addition, it requires the allocation of a
new transport layer port at the server side because plain
TCP and TLS-based TCP connections cannot use the
same port. With HIP, no changes to the application are
required and the same transport layer port can be used at
the server side. This makes HIP easier to deploy even to
binary-only legacy applications for which there is no
source code available. As such, HIP can be considered as
a means for extending the lifetime of legacy network
applications which require security or mobility support.

Figure 1. HIP introduces a new layer to the stack

Although there is some on-going effort to make UDP to
support TLS [25], currently TLS cannot be used directly
with UDP because it assumes a reliable transport
protocol. This is problematic especially when VoIP calls
need to be protected end-to-end., Fortunately, HIP is
applicable also to UDP. HIP supports end-host mobility
which is currently missing from the current TLS
specification.

C. Managing Security in a Usable Way
The success of any application in managing security
depends on its usability; this is also the case with HIP.
However, usability and security are often seen as
contradicting goals: what is usable cannot be secure and
vice versa [9]. A typical example is an easy-to-remember
password that tends to be trivial to break, whereas a
strong password is hard to recall but security gets
breached when users write such passwords down or share
them with others [10, 29].

Overall, users can be considered as the "weakest link" in
security [1, 29]. If users do not understand the security
model behind the user interface, security is at risk.
Furthermore, a gap between the mental model of the
security experts and non-experts can lead to ineffective
and poor communication of how the security works, and
what the risks are [5]. Also, in computer security, user
errors are in general not acceptable [12]. This leads to the
fact that usable security can be described as "usability
times two": in security, a single error may be too much,
so the generic "trial-and-error" approach will not do.
Situation where "the average man" is trying to maintain
his security compares to the metaphor of an elephant
visiting a store selling objects made of glass - with the
lights turned off.
Further, security is usually not the users’ primary but
secondary goal – an enabler for trustworthy
communications of money, private information of
personal relationships [11]. Users are not interested or
motivated in security per se, but rather as means to an
end. Because of this, users should be burdened as little as
possible with the security features [12], and usage of the
security should become a natural part of the actual usage,
not an unnatural, add-on extension of the security that
introduces an interruption to their primary task, as only
too often is the case [11]. For example, unnecessary
prompts should be avoided, safe default settings provided,
automating as much as possible of the security taking
place.
It should also be noted that users do not often realize that
they are at risk in a given situation, or what the actual
risks are [31] [7]. Users may perceive the risks to be
different from what they actually are. However, for the
security UI to be successful, it needs to take into account
the perceived risks or the users do not feel secure. It is a
general saying in the field of usability that if the user
cannot find functionality, it does not exist. For the UI this
means that if the security is not perceived to be there,
there is no security from the user’s point-of-view.
A further problem in creating usable security is that users
have learned to ignore security indicators. These include
usage of padlock icons in the browser address bar and in
the lower right corner, the coloring of the address bar, and
an extra “s” in the protocol name to show that TLS
protocol is being used. There is new work on the browser
development side to create standards for web security
interfaces [32][30][15]. Unfortunately, they do not work
because users do not understand their significance, or the
information given is too hard to follow and digest.
Users tend not to know what valid trust marks look like
and how to interpret declarations of privacy and how
much trust should be induced from their presence [4]. In
our previous studies, it became evident that users felt
trusting when an image of a visa sign was visible on a
given site, falsely inhering that Visa would guarantee
their transactions with the site in question. Further, if a

user wants the bargain badly enough, he will give up the
security [3] [22]. Current security indicators and privacy
policy declarations, then, are neither sufficient nor the
most usable solution to provide users with information
about security [32].
The Extended Validation Certificates [14] approach,
intended to overcome some of these obstacles, introduces
a new user interface for handling security. However, from
usability point-of-view, this scheme seems somewhat
problematic, since it includes usage of multiple colors for
indicating security. Not only color coding is likely to
diminish the overall accessibility, but interpretation and
even perception of colors may differ according to cultural
variation [8]. It is also difficult for users to identify
individual colors in isolation in a reliable way, and the
surrounding color scheme of the browser frame and the
web page may affect how the color is perceived and how
noticeable it is. Furthermore, this type of security
indicators may not be noticeable enough either, as e.g.
[32] have shown.
III. IMPLEMENTATION DESIGN AND

SECURITY MODEL
The user interacts with Firefox web browser and GTK-
based HIP GUI. The browser contains an add-on that
displays indicators when a connection is based on HITs.
The GUI receives notifications on all HIP network
communications from the HIP software module. The GUI
prompts the user when it is needed: the user can accept or
reject new HIP related network connections. Hence, the
GUI acts as an end-host firewall for HIP. The user can
also use the GUI to sort the server fingerprints to groups
as illustrated in Figure 2. The main purpose of the groups
is to distinguish between trusted and untrusted peers.
Groups can also be used to apply common attributes to all
of the fingerprints within the group.
The HIP module translates host names to HITs and
provides the browser HIP-based connectivity by
intercepting some of the networking related function
calls. The module allows varying degrees of
authentication for the browser by first trying the strongest
authentication method available and then falling back
towards weaker authentication methods if the stronger
method is not available. At best, the client has obtained
the public key of the server already before establishing
the connection. This is visible to use both by the browser
add-on and the prompt of the HIP GUI. As the second
best option, the client tries to establish opportunistic
security and learns the public key during the connection
set up. This step is visible to the user only by the prompt.
Finally, the client uses regular TCP/IP if the server is not
HIP capable, which is detected through a timeout. In such
a case, no HIP-based security indicators are visible to the
user.

It should be noticed that TLS can be used to improve the
overall level of security. Thus, the strongest level of
security occurs when client uses both HIP and TLS.

Figure 2a. HIP management GUI navigation tree

Figure 2b. A close-up on HIP management GUI
IV. USABILITY TESTING OF HIP

The test design was based on refinements made on a
round of pilot tests with 10 users with a mock-up of a
Finnish online auction site huuto.net, where users sell and
buy personal items to peers. Based on user reactions, we
changed the application to a mock-up Webmail, in order
to narrow down the complexity of the choices and
interactions available to better control. We also
considered using an online bank as in [32] but gave up
this idea since we were not able to create a mock-up
design for a bank that would look convincing enough. On
basis of existing literature, Webmail account design is
less demanding in order to be experienced trustworthy
enough to provide valid data about real-enough user
reactions as described in. [13], [18], [8]. We were
interested in the following questions: Would users notice
the security indicators? Which security indicators would

users use for judging webmail security? Would users be
able to use HITs? How understandable is the concept of
HIT?
According to [22], if users know the test is about security,
they tend to become more caring and thoughtful about
their actions, acting more responsible they normally
would and even then, [3] have shown that privacy policy
information tends to be noticed. Users have learned to
ignore security in real life as it is often incomprehensibly
expressed and tediously presented. These test effects were
taken into account when designing and analyzing the test
behavior and test results.

A. Test Setting
We used HIPL software branch “gui” with patch level
226 in the usability tests. The OS was Ubuntu 6.10 Linux
with Linux 2.6.17.14 kernel. The user operated an IBM
R51 laptop which was connected directly to another
laptop hosting a number of virtual webmail servers
(webmail1-5.) The servers were HIP enabled except for
webmail1 and webmail4. All of the servers were running
apache2 web server.

The tests were conducted in a lab-type environment: a
closed, silent meeting room with no outside disturbances.
The usability tests with the first group were conducted at
the company premises of the participants. The usability
tests with the second group were conducted at the
premises of the university. In the test, a moderator
observed, and if necessary, guided the user through the
test tasks. The test ended with an interview. Another
person was taking notes. Users took the test one at a time.
The test took approximately 30-45 minutes depending on
the user’s eagerness to give feedback, talkativeness in the
interview section, and speed of interaction in conducting
the HIP management GUI test tasks.

B. Test Users
We had two types of users. Group 1 consisted of 9 users
already familiar with HIP. The users were working for an
international network and telecommunications vendor and
their work included work on HIP. Group 2 consisted of 6
users not familiar with HIP, but also this group was
technically adept. All users were students or graduates of
a technical university, aged between 18-39 years, and
familiar with some type of encryption technologies other
than HIP. All users were male. No user was color blind.
C. Test Procedure
Users first filled in a background questionnaire (gender,
age, average computer usage). Before starting any of the
tasks, the users were told shortly about the test setting:
HIP was explained to be a new way to provide security in
the Internet, providing kind of "fingerprints" of the
services used online. Users were also told that they would
be logging into email services, and then test out a new

user interface to manage the fingerprints HIP created for
them during logging into the email services. A talk-aloud
protocol was employed: users were asked to tell what
they were thinking as they proceeded through the test
tasks.

The users would first log into the five Webmail accounts,
one by one. The test proceeded from the least secure
account login procedure to the most secure. The security
indicators were introduced gradually in an incremental
fashion. The reason for such a set-up was our hypothesis
that users would realize that the security indicators were
missing only after their gradual introduction.

Figure 3. Webmail 3 site with blue address bar,icons and
text that all indicate a HIP secured connection.

This also proved to be the case. The five webmail
accounts showed the following security indicators:
Webmail 1 & 4: Insecure connection. There are no
security indicators visible, except for the statement in
plaintext in the middle of the page saying "This
connection is insecure. Please enable HIP".
Webmail 2: The connection is secured with opportunistic
HIP. Traditional security indicators are, however, still
missing, and the security is stated only in plaintext in the
middle of the page saying "This connection is secured and
encrypted by HIP". Below the statement, the HIT for the
connection is shown.
Webmail 3: HIP module finds the HIT of the server
before contacting it and now there are more security
indicators visible in addition to the text on the web page:
the address bar has turned blue, and there is a picture of
padlock both in the address bar and in the lower right

corner, with text "HIP" and also the HIT for the site is
shown as visualized in Figure 3.
Webmail 5: Both TLS and HIP are used, the address bar
has turned yellow, and the same security indicators as in
previous case are present. Web server forwarded traffic
from HTTP port to HTTPS.

We created random usernames and passwords to be used
during the test, instead of asking users to use their own
username and password because users have shown
reluctance in using this type of personal, private
information in test settings in previous tests by us [19]
and others [32]. The Webmail addresses and the
username and password, of type “username” and
“passwd” were presented to the users on paper slips one
by one. After logging in, the users were asked to rate the
experienced security of the Webmail in question on a
scale from 1 to 5, where 1 was considered “insecure” and
5 “secure” We were unsure if users would be willing to
use the scale and if they would only use some ratings, but,
in fact, it turned out that they used the full scale from 1 to
5, also stating the reasons behind their judgments.

After the Webmail log-ins, the users were asked to
complete several tasks with the HIP GUI. The test tasks
can be found in Table 1. The tasks were described in
natural language, e.g. for Task 8 “Can you change the
name the group you created earlier?” The word “security”
was not mentioned in task description to users in order to
avoid bias. Care was taken to see that each user at least
tried to accomplish all tasks at some point of the test.
With the prototype, not all possible functionalities were
available but, they were shown on the GUI to give users
some idea of all properties of the security management
that GUI could allow for.

Table 1. The usability test tasks (from moderator’s
perspective). Tasks 1-6 describe the security level and the
order in which users logged into the Webmail accounts.
Tasks 7-9 are HIP GUI related test tasks.
Task no Task content
1 Log into insecure webmail1
2 Log into webmail2 with opp. HIP
3 Log into webmail3 with normal HIP
4 Repeat task no 1
5 Repeat task 3, no prompt this time
6 Log into webmail5 with TLS and HIP
7a Find new fingerprint
7b Create a new group and rename it
7c Move a fingerprint
8 Rename a group
9 Delete a fingerprint

Blue address bar

Security information about using HIP

HIP lock and HIT are shown

Lock icon

All of the test sessions ended with a brief interview,
where the user could provide feedback in a free fashion.
Users were also asked about their real life usage of
security after testing the Webmail accounts and the HIP
GUI. The questions in the interview part included self-
report on:

 what kind of encounters they had had with
security;

 what kind of encounters their friends had had
with security;

 if were they conducting online transactions, and
if so, what were the payment methods they were
using;

 if they had had any problems with security
before; and if so, what kind of problems;

 if they were interested in security in general, and
if so, how would this relative interest/disinterest
manifest itself in their behavior.

D. Analysis of the Tests
Figures 4 and 5 show how users evaluated the security of
the Webmail accounts and how they succeeded in the
tasks related to the HIP GUI management. Figure 4 shows
mean and standard deviation of security grades from users
in the test: Overall, users evaluated the security level of
the HIP protected communications roughly twice as
secure as unprotected communications. The case with
TLS (and HIP) was rated more secure than HIP
communications but the difference was insignificant.
Group 1 doubted the security indicators on the web page
more than Group 2.
Most users reported awareness of security indicators on
websites and claimed they were actively following them.
They claimed to be actively following and were familiar
with 1) pictures of locks in the browser, 2) changing color
of address bar and 3) the ‘S’ in the HTTPS string, and 4)
certificate announcements, all associated with the SSL
protocol usage which was trusted by all users in our
study. However, in our study, it became evident that in
practice this was not really so, as many users did not
report that the security indicators were missing from the
first Webmail accounts they were shown during the test.

Security Evaluation

0

1

2

3

4

5

6

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

G
ra

de
 A

ve
ra

ge

Group 1
Group 2

Figure 4. Perceived level of security with the Webmail
sites according to user evaluations.

Most users were indulging in online transactions in real
life on a regular basis. However, users were not very
trusting towards the online service providers they were
unfamiliar with. Users reported using several means to
protect their assets online, such as a) using only sites they
knew well, or b) only making payments via their bank’s
online services. Some reported also c) having multiple
credit cards: one for offline and one for online purchases,
with very limited credit limit on the latter in order to
minimize the risk. For some of the youngest users in our
tests, d) using someone else’s card (parents’) was one
additional way to overcome personal security risks in
online situations

Management Tasks

0
10
20
30
40
50
60
70
80
90

100

Task 7a Task 7b Task 7c Task 8 Task 9

Su
cc

es
s

R
at

e
(%

)
Group 1
Group 2

Figure 5. The success rate for management tasks with
HIP GUI.
.
Familiarity with the security indicators came up as one of
the key ingredients in promoting willingness to feel
secure. Users wanted to see something similar to the
current SSL implementation also with HIP. This is a
natural outcome, as routine ways to deal with new
interactions are very often preferred by users - ‘old habits
die hard’. Yet, even on basis of habitual use patterns,
users failed to notice there was a color difference in the
address bar; for HIP it was blue, whereas for SSL and
HIP-SSL combination it was yellow. This is a remarkable
result from the perspective of the EV, since it is to a great
extent based on changing the coloring of the address bar
to inform the user about the security of the situation.
Without educational efforts the users may not notice such
indicators, or will misinterpret them. Our users were
happy as long as the address bar was colored, regardless
of the color.

There was a clear difference between the two user groups.
The group already experienced with HIP was more
actively searching for the security indicators, whereas the
other group only rarely noticed these indicators at all.
Further, even group experienced with HIP sometimes
failed to notice missing security indicators until logging
in a webmail which had more security indicators. Only

then would they realize that these indicators were not
present in the previous webmail accounts they had logged
into and considered secure.
There was also a clear gap between what users were
actually noticing during the test about security indicators,
and what they claimed to be searching for in online
situations in real life. So, once again, there was a clear
difference in what users claim to do with what they
actually do which is typical in usability studies. This is
why it is so important to observe users in action and not
only rely on their reports of their own actions [28].
Overall, even if users seemed to have learned to look for
indicators of security at least to some extent and were
involved in online transactions, their attitudes, sources of
information and amount of interest in security were
surprisingly underdeveloped. The users claimed they
would not mind if someone would gain access to their
personal e- mails, since “they didn’t have anything to
hide” – a claim users often abandon once the privacy gets
breached. Security was seen as a burden, and users were
not really interested in it – they did not follow security
news, and did not express worry about bad things
happening to them.

V. DISCUSSION
The test setting was not very realistic: a laboratory
environment with no disturbance; users were not using
their own usernames and passwords. They also knew the
test was about security. However, the usability tests
revealed a number of areas of improvement in the UI
(Figure 6).

Figure 6. HIP GUI improvement items.

The UI was clearly too technical: users experienced it
difficult to understand, “aimed for technical
administrators”, and most non-HIP users reported they
wished they would prefer not manually handling the HITs
at all. Further, the traditional security indicators were not
efficient: users didn’t notice the changing color of the

address bar (blue for HIP, yellow for SSL). The absence
of the security indicators went unnoticed, too. Only the
Firefox add-on displayed security indicators when HIP
was used in “normal” mode. For the opportunistic mode,
the add-on displayed IP addresses instead of HITs. This
was the only way for the user to distinguish between the
opportunistic and normal modes. However, users didn’t
notice the change, which means that the users did not
notice that they were using leap-of-faith security. A user
could have compared the HIT of the server displayed on
the web page and noticed that it does not match to IP
address displayed by the add-on, but he didn’t. The lesson
learned is that the lowered security used in opportunistic
mode should be informed to the user at least in the
prompt.
Overall, the UI concepts were difficult. Users were
confused with the concepts of HIT and HIP and explicitly
expressed a craving for more information. Even when
they were able to learn that fingerprint and HIT were
synonyms, the concept of a fingerprint or HIT itself was
experienced to be difficult. Especially, differentiating
between HITs of the local and peer host was very hard.
Further, usage of grouping needs retouching: Users could
imagine, when prompted, some possible uses for groups,
such as grouping the HITs according to the service or
context with which they would be used. However, they
didn’t at this point at least realize that the groups could be
used for indicating which HITs were allowed and which
were not. Better visualization of the allowed/denied
dimension is probably needed for enhanced usability.
Users were looking for a help menu, and also wanted to
have more tooltips and explanatory texts present in the
UI. This is indicated that the UI was somewhat immature
and technical. For the same reason, UI was seen as
“administrative GUI”. Further, users were frustrated of
being shown fields that they could not access. Some users
reported it made them realize how little they actually
knew of the technology behind the GUI. In the next
version, such fields must be either enabled or not shown
to the users.
The familiarity aspect was important: Users liked the HIT
announcement to the extent that it reminded them of other
types of certificates they were familiar with. Users also
expressed an explicit wish for the procedure to be similar
to SSL.
Currently, in the navigation panel, there is only one view
available for the HITs. However, there is probably need
for more, alternating views to the same data. Users may
want to organize the HITs according to contents and/or
services they are related to, or according to when the
HITs are in fact allowed or denied, to enhance
personalization.
Further usability improvements include creating suitable
icons for the HITs and adding keyboard shortcuts for
advanced users in order to support multiple interaction
methods.

VI. CONCLUSIONS
On basis of tests it is obvious that a lot of work still needs
to be done for the HIP GUI to be truly usable. However,
users were able to manage the created HITs with the
prototype to the extent that they were able to create and
remove groups, and have some idea how they could be
used in practice. The identified usability improvements
are straightforward to implement and would probably
enhance the user-friendliness of the GUI to a great extent
– something to be evaluated with another round of
usability tests. The differences with the two user groups
were relatively small, which may be indication that it is
possible to please most users with just one GUI, instead
of having several versions for various users.

HIP is based on low-layer IPsec mechanisms which may
not be always visible especially to legacy network
applications. In such a case, as complete automation may
not be the best way to go as users tend to crave for visual
confirmation and feedback for security taking place,
prompting can be used to assure the user that the
underlying communications are in fact secured.
Alternatively, the client or server software can be
modified to show security indicators to the user in a way
that is likely to get noticed. We experimented with both
of these approaches in this paper.

Our work has further corroborated that the current
security indicators do not work. Existing research has
shown that users are interested in security only as a
secondary goal, as means to an end [11] and do not
understand security information when it is provided for
them [32]. Still, users may want to know more about
security if it is easily available and provided in a way that
is understandable [1].

References
[1] Adams, A., Sasse, M.A., Users are not the Enemy, CACM 1999.
[2] Cao, X. and Iverson, L. 2006. Intentional access management:

making access control usable for end-users. Proc. of SOUPS '06,
vol. 149. ACM Press, New York, NY, 20-31

[3] Grossklags, J., Thaw, D., Perzanowski, A., Mulligan, D., and
Konstan, J. (2006), User Choices and Regret: Understanding Users'
Decision Process about Consensually acquired Spyware, I/S: A
Journal of Law and Policy for the Information Society, Vol. 2, No
2.

[4] Tsai, J., Egelman, S., Shipman, R., Pu, K-C.D., Cranor, L.,
Acquisti, A (2006), Symbols of Privacy. Poster Abstract.

[5] Liu, D., Asgharpour, F., Camp, L.J, Risk Communication in
Computer Security Using Mental Models. Proc. of USEC07 &
Financial Cryptography 2007, LNCS.

[6] P. Jokela, R. Moscowitz, Nikander, P. Using the Encapsulating
Security Payload (ESP) Transport Format with the Host Identity
Protocol (HIP), RFC5202, April 2008.

[7] Camp, L.J, Trust & Risk in Internet Commerce, MIT Press,
(Cambridge, MA) (2000).

[8] Cyr, D., Head, M. and Ivanov, A. (2006). Design Aesthetics
Leading to M-loyalty in Mobile Commerce. Information and
Management.

[9] DeWitt, A. J. and Kuljis, J. 2006. Is usable security an oxymoron?
Interactions 13, 3 (May. 2006), 41-44.

[10] Dhamija, R., Perrig, A., Deja Vu: A User Study. Using Images for
Authentication. Proc. of the 9th USENIX Security Symposium,
August 2000.

[11] Yee, K-P., Guidelines and Strategies for Secure Interaction Design,
in Cranor, L.F & Garfinkel, S (Eds.): Security and Usability:
Designing secure systems that people can use. O'Reilly Books
(2005) 247-274.

[12] Whitten, A, Tygar, J.D (1999), Why Johnny Can't Encrypt: A
Usability Evaluation of PGP 5.0. Proc. of the 8th USENIX
Security Symposium, August 1999.

[13] Ecommerce Trust Study, Cheskin Research and Studio
Archetype/Sapient. 31. http://www.cheskin.com (1999)

[14] Franco, R., Better Website Identification and Extended Validation
Certificates in IE7 and Other Browsers. http://blogs.msdn.com/ie/
archive/2005/11/21/495507.aspx, Nov. 21, 2005.

[15] Hartman, S., IETF Internet-Draft: Requirements for Web
Authentication Resistant to Phishing. http://www.ietf.org/internet-
drafts/draft-hartman-webauth-phishing-09.txt, August 2008.

[16] Henderson, T., Nikander, P., Komu M, RFC5338: Using HIP with
Legacy Applications, Sep 2008.

[17] Touch, J., Black, D., Wang, Y-S., RFC5378: Problem and
Applicability Statement or Better Than Nothing Security (BTNS),
Nov 2008

[18] Karvonen, K., The Beauty of Simplicity. Proc. of the ACM
Conference on Universal Usability (CUU 2000), November 16-17,
2000, Washington DC, USA

[19] Karvonen, K: Creating Trust, Proc. of the Fourth Nordic Workshop
on Secure IT Systems (NordSec'99), November 1-2, 1999.

[20] Komu, M, Tarkoma, S, Kangasharju, J., Gurtov, A., Applying a
Cryptographic Namespace to Applications, Proc. of the first ACM
workshop on Dynamic Interconnection of Networks (DIN 2005)

[21] Komu et al, Basic HIP Extensions for the Traversal of Network
Address Translators, Oct, 2008, Internet draft, work in progress

[22] Kuo, C., Perrig, A., Walker, J., Designing an evaluation method for
security user interfaces: lessons from studying secure wireless
network configuration. Interactions, 13(3):28-31, ACM Press,
2006.

[23] A. Gurtov, Host Identity Protocol (HIP): Towards the Secure
Mobile Internet, ISBN 978-0-470-99790-1, Wiley and Sons, June
2008.

[24] Modadugu, N., Rescorla, E., The Design and Implementation of
Datagram TLS, Proc. of NDSS 2004, February 2004

[25] Moskowitz, R., Nikander, P., Host Identity Protocol (HIP)
Architecture, RFC 4423, May 2006.

[26] Moskowitz, R., Nikander, P. Jokela, P., Henderson, T., Host
Identity Protocol, RFC 5201, April 2008.

[27] Nielsen, J, Usability Engineering, Academic Press, Boston 1993,
[28] Riegelsberger, J., Sasse, M.A., & McCarthy, J., The Researcher's

Dilemma: Evaluating Trust in Computer Mediated
Communications. International Journal of Human Computer
Studies, Vol. 58, (2003) 759-781

[29] Staikos, G., Web Browser Developers Work Together on Security.
http://dot.kde.org/1132619164/, Nov. 2005.

[30] Salam, A.F, Rao, H.R., and Pegels, C.C.: Consumer-Perceived
Risk in E-Commerce Transactions. Comm. of The ACM,
December 2003/Vol. 46, No. 12, (2003) 325-331

[31] Schechter, S., Dhamija, R., Ozment, A., Fischer, I., The Emperor's
New Security Indicators, Proc. of the IEEE Symposium on
Security and Privacy, May 2000.7

	Preface
	Contents
	List of Publications
	Introduction
	Problem and Scope
	Methodology
	Contributions
	Author's Contributions
	Structure of the Thesis

	Challenges and Solutions in the TCP/IP Architecture
	Non-Persistent Addressing
	Challenges
	Solutions

	Heterogeneous Addressing
	Challenges
	Solutions

	Insecure Addressing
	Challenges
	Solutions

	Deployment Considerations
	Host Identity Protocol
	Persistent Identifiers
	Heterogenous Addressing
	Secure Addressing

	Summary and Comparison

	A Consolidated Namespace for Network Applications, Developers, Administrators and Users
	Revisiting the Challenges for Network Applications
	HIP as a Consolidated Namespace for Network Applications
	Impact of HIP to End-users
	Deployment Aspects
	Summary and Lessons Learned
	Future Directions

	Conclusions
	Bibliography
	Publications
	Publication I
	Publication II
	Publication III
	Publication IV
	Publication V
	Publication VI

