

A fresh look at IP based Mobility and Multi-homing

Pekka Nikander

Ericsson Research NomadicLab

Abstract

The current trend in mobile networking is towards mobile hosts that have multiple network interfaces,
e.g., WLAN and GPRS. However, when the current Internet architecture was originally designed, nei-
ther mobility nor multi-homing were considered. In the current architecture an IP address represents
both a host’s identity and the host’s topological location. This overloading has made IP mobility and
multi-homing unnecessarily hard from the security point of view.

In this paper we discuss how the Host Identity Payload (HIP), being considered at the IETF, can be
used to simultaneously solve the security problems, and many of the practical problems, related to end-
host multi-homing and end-host mobility. Basically, HIP introduces a new cryptographic name space
and protocol layer between network and transport layers, breaking the fixed binding between identities
and locations. The approach is especially suitable for large open networks, where no pre-existing trust
relationships can be assumed.

1 Introduction

When the TCP/IP protocol suite was originally designed
in the late 1970’s and early 1980’s, it was hardly imagin-
able that most of the world’s computers would eventu-
ally be mobile and have several distinct network connec-
tions at the same time. Thus, the protocol suite was
designed with singly-homed statically located hosts in
mind. In that world, the location bound IP addresses
served beautifully as identifiers for the hosts, since hosts
rarely if ever moved between locations.

Years ago, with the introduction of dynamic address
assignment in Point-to-Point Protocol (PPP) and by
Dynamic Host Configuration Protocol (DHCP), the
assumption that an IP address would uniquely identify a
host was broken. The situation was further worsened by
the introduction of private IP address spaces and Net-
work Address Translation (NAT) [1][2]. Currently it
looks like that the emergence of ubiquitous computing
and ad hoc networks will soon lead to a situation where
the majority of computing hosts are multi-homed and
mobile, and have no static addresses1.

In addition to the nature of hosts, also the nature of
users have changed during the years. For many years,
the Internet was basically used by a fairly homogenous

user community where everybody more or less trusted
everyone else. Not so any more. Trustworthiness must
now be proved through explicit cryptographic mecha-
nisms.

In a word, the environment has changed. Looking
from the 1980’s point of view, there are new require-
ments for mobility and multi-homing together with the
necessary host-to-host signalling security. Addressing
these within the limitations of the current architecture
has turned out to be hard; therefore, it may be necessary
to do some radical re-engineering for the architecture to
bring the TCP/IP protocol suite in par with the new
requirements. The intention of this paper is to work as a
vehicle in that re-design discussion.

1.1 Need for a new protocol layer

The biggest architectural re-engineering need seems to
be the demand for a new name space and an associated
protocol layer. As suggested, for example, by Chiappa
[2] and Bellovin [3], there seems to be a strong need for
adding new kinds of identifiers, end-point identifiers,
somewhere between the network and transport layers.
More recently, the Name Space Research Group
(NSRG) of the Internet Research Task Force (IRTF)
have also published their first interim report [4]; in the
report the need for a new name space and protocol layer
is extensively discussed, both pro and cons, but no clear
conclusions are provided. The main argument against
the new name space and layer seems to be the fear of in-
troducing more complexity without solving any explicit

1 Sometimes such an environment is described with the
term simultaneous multi-access, emphasizing that the
end-host will have several parallel access methods in
its disposal.

problem. Even though we acknowledge the value of this
argument, we also want to note that the functional com-
plexity inherent in the introduction of the new layer ac-
tually brings forth architectectural simplicity; see
Section 5.

Our position. We believe that both a new name space
and a new protocol layer are needed. A clear indication
of this need is the sheer number of smallish protocols
that people at the IETF are trying to squeeze in to the
narrow space between the IP and the upper layers. For
example, in addition to IPSEC and Mobile IP, we now
have Network Address Translation (NAT) and even
NAT related signalling protocols such as RSIP and
MIDCOM, quality-of-service signalling mechanisms ,
and proposals for end-host multi-homing. Even the exis-
tense of IPv6 extension header mechanism itself is an
acknowledgement of this need.

Chiappa ([2], Section 8.2) argues that the introduction
of end-point identifiers does not necessitate a new layer.
He writes that “layers should only be introduced when
needed, and there does not seem to be a major utility in
being able to use the internetwork layer without dealing
with endpoints”. We do think, as we mentioned above,
that a new layer is needed indeed. Firstly, it seems that
the required new functionality falls in two different cate-
gories: those functions that do depend on network topol-
ogy and the specific location of the end-host (e.g. QoS)
and those that do not (e.g. end-to-end security). Mobility
and multi-homing fall in between, and seem to create a
natural protocol boundary so that location dependent
functions fall below it and location independent func-
tions ascend above it (see Section 5.1).

Secondly, the added functionality provided by the
new cryptographic identifiers imposes a performance
cost in the form of an indispensable cryptographic pro-
tocol (see Section 4). Thus, the utility value Chiappa is
calling for is created by the ability to select between
added functionality and lower cost. A new layer can be
used or bypassed, depending whether it is worth paying
the cost for the added security and mobility support.
Without a new layer such a choice would be hard to
make. A new layer adds orthogonality by allowing this
choice.

1.2 Original contributions

Many of the issues discussed in this paper are in no way
new, but have been floating around for a number of
years. Our main contributions stem from addressing mo-
bility, multihoming and related security at the same
time, and arguing how they can be handled in a fairly or-
thogonal way. In particular, we define an orthogonal

end-host mobility and multihoming architecture, where
the properties for end-points, parallel communication
paths (i.e. multi-homing), mobility, and related security2

are neatly separated into different dimensions.

One way of characterizing our approach is to compare
it to current development in the mobile-ip and multi6
working groups at the IETF. At the mobile-ip working
group, the architecture has been generally ready for a
long time, but solving the associated security problems
have taken a long time and produced a sub-optiomal
result. At the multi6 working group, people have pro-
posed several different host based approaches to solve
the multihoming problem. Our approach, in a way,
resembles the mobile IPv6 and host based multi6
approaches, but at the same time it provides a trivial
solution for the mobility related security problems and
many of the multi-homing related scalability problems.
On the other hand, due to the architecturally different
nature, our approach leads to a cleaner concepts and
simpler implementation.

1.3 Paper structure

The rest of this paper is organized as follows. In
Section 2 we discuss the nature of mobility and multi-
homing, thereby paving the way for the forthcoming
discussion. Section 3 defines the proposed new architec-
ture in detail, and Section 4 discusses it from the secu-
rity point of view. In Section 5 we again analyze some
of the issues already briefly mentioned in Section 1 and
elsewhere in this paper. Finally, Section 6 concludes this
paper.

2 Background

In this section we summarize the necessary background
for the following discussion. We assume that the reader
is familiar with the architecture of IPv4 and IPv6 based
TCP/IP protocol suites, and knows the fundamental
principles behind layered protocol design. Thus, we
limit this background discussion to analyzing mobility
and multihoming from an end-host point of view. Later,
in Section 3, we return to these concepts; there we show
that they are actually quite similar and, under certain cir-
cumstances, may be taken as duals of each other.

2 To be more precise, in this context “security” means
mobility and multi-homing related signalling authori-
zation, i.e. access control on believing in the contents
of received mobility or multi-homing signalling mes-
sages. Especially, it does not denote generic applica-
tion-level end-to-end security.

Table 1: Abbreviations used in the paper, in alphabethical order

Abbrev. Explanation

AH Authentication Header.
An optional IP header used to protect the
integrity and authenticity of IP packets.

DHCP Dynamic Host Configuration Protocol.
A protocol used to assign an IP address
and other information to hosts by a server.

ESP Encapsulated Security Payload.
An optional IP header used to protect the
integrity, confidentiality and authenticity
of IP packets.

GPRS GSM Packet Radio System.
An extension to the GSM wireless phone
network to carry packet data.

HI Host Identifier.
An end-point identifier proposed by the
HLP/HIP architecture.

HIP Host Identity Payload.
A proposal by Robert Moskowitz and
others to add a new layer above the IP
layer but below the transport layer.

HIT Host Identity Tag.
An 128 bit representation of a Host
Identifier, generated by taking a
cryptographic hash of the HI.

HLP Host Layer Protocol.
An alternative name for HIP, emphasizing
the actual protocl used.

IPSEC IP Security.
A suite of protocols used to secure IP
packets. See also AH and ESP.

IRTF Internet Research Task Force.
The research branch of the IETF.

LMM Local Mobility Management.
A concept for hiding host mobility by
managing it locally. See also MAP.

MANET Mobile Ad Hoc Network.
An IETF WG studying networks
consisting of independent mobile nodes.

MAP Mobile Anchor Point.
A network node used in LMM. LMM
agent in an alternative name for MAP.

MIDCOM Middlebox communication.
An IETF WG studying non-router nodes
in the middle of the network. See NAT.

NAT Network Address Translation.
A practise of the network changing IP
addressess on the fly

NSRG Name Space Reseach Group.
An IRTF research group.

PFKEY An IPsec API that allows a key
management daemon to manage the
cryptographic keys used by IPsec AH and
ESP.

PPP Point-to-Point Protocol.

QoS Quality of Service.

REA Readdressing packet.
Used in HIP to implement mobility.

RR Return Routability.
A security mechanism used in MIPv6.

RSIP Realm Specific IP.
An alternative for NAT.

SCTP Stream Control Transport Protocol.
An new transport layer protocol,
somewhat similar to TCP and UDP

TLI Transport Layer Identifier.

WLAN Wireless LAN

Abbrev. Explanation

2.1 Mobility

For the purposes of this paper, we define mobility to de-
note the phenomenon where an entity moves while
keeping its communication context active (see e.g. [2]).
When discussing mobility, it is often desirable to differ-
entiate between user mobility, code or application mo-
bility and node or end-host mobility. Recently it has be-
come apparent that this list needs to be augmented with
network mobility, which refers to a situation where a
whole subnetwork moves from one location to another.
However, network mobility is beyond the scope of this
paper, and treated separately in [5].

User mobility denotes functionality that allows users
to move from one end-node to another and continue
their tasks. In the extreme form it requires full process
migration together with communication session migra-
tion, combined with adaptive user interfaces that allow
the migrated process to adapt to the new execution envi-
ronment. Code mobility, on the other hand, refers to
functionality that is needed to support mobile agents and
migrating processes. In a limited form, it just allows an
existing process to be migrated to a new node, and some
other mechanism is needed to re-establish the communi-
cations context.

Node mobility denotes functionality that allows a
communications node to change its topological location
in a network. In a typical case, a wireless node changes
the access point it uses to communicate with a fixed net-
work.

As we will see in Section 5.4, given the proper node
mobility architecture, certain aspects of user and code
mobility become easier. That is, once the architecture
makes it easy for end-hosts to move, that is, to logical
communication end-points to change their topological
location, it also makes process migration easier.

End-host mobility. In this paper we concentrate on
end-host mobility. With that we mean that an end-host,
i.e. a computational unit hosting a number of communi-
cating processes, changes its topological point of attach-
ment. At the same time, however, we want to make sure
that all active communication contexts remain active. In
other words, we want that the communicating processes
can continue as unaffected as possible. In particular, we
aim for an architecture where the processes do not see
mobility other than, possibly, in changes to the actually
experienced quality of service.

To reflect reality, we assume that there are a number
of mobile nodes that attach to a relatively fixed network
(see Figure 1). Furthermore, we assume that the network
layer address prefixes are structurally determined by the

network. That is, we assume that the network topology
determines the routing related portion of the IP layer
addresses. This assumption reflects the fact that in a
large network it is important, in order to keep the rout-
ing table sizes manageable, to keep routing prefixes con-
sistent with the network topology (see e.g. [6]).
Furthermore, for the sake of simplicity, the consider-
ations for link local, site local, anycast, and multicast
addresses are beyond the scope of this paper. That is, we
assume that all addresses are globally routable, unless
explicitly stated otherwise.

As a consequence of these assumptions, whenever a
node moves, its network layer address necessarily
changes. Thus, in order to continue to communicate, the
host must be able to signal the changes in its addresses
to its active peers. Furthermore, this signaling must be
secure since unsecured signalling can lead to a unautho-
rized traffic diversion and denial-of-service attacks.

To really understand why the current situation makes
end-host mobility unnecessarily hard, we have to con-
sider the structure of the current IP architecture. Today
there are exactly two name spaces that are related to
mobility. Firstly, we have network layer addresses. As
stated above, these addresses are determined by the net-
work topology. Secondly, we have Transport Layer
Identifiers (TLIs, e.g., ports in TCP and UDP). Of these,
the network addresses usually have a global scope3, and
the TLIs are unique within the scope of a single address.
Since we have only these two name spaces, the commu-
nicating processes must be named with <address, TLI>
pairs, binding the names effectively to the topological
locations in the network. This situation makes it difficult
to give unique names to processes that are mobile, e.g.
hosted on a mobile node. That is, since the addresses

3 Or are translated into global scope addresses, if NAT
is used.

Figure 1: The mobility model

Topologically
slowly changing
internetwork

Possible points of attachmentMobile hosts

A host in transit

must change due to mobility, the names of the end-
points also must change. This is sometimes called the
mobility problem [7].

There are the two fundamental approaches to solving
the mobility problem: packet forwarding and dynamic
updates of end-point bindings. Packet forwarding suf-
fers from intrinsic performance penalty: the hosts can-
not use optimal routes since they do not know the
topological locations of their peers. Dynamic updating
of bindings suffers from a number of security problems,
as well as some other smaller problems [7].

In the dynamic update side, there are two basic rea-
sons behind the security problems. Firstly, unsecured
binding updates would allow various man-in-the-mid-
dle, masquerade, and denial-of-service attacks (see e.g.
[7], [8]). Thus, one must employ a way to somehow
secure them. This, in turn, requires creating authoriza-
tion relationships between the parties involved. Sec-
ondly, even though in theory it would be possible to
create a global authorization infrastructure that would
allow the update messages to be secured, such an infra-
structure does not exist, and creating one would be
extremely difficult or impossible in practice. As we will
see, the introduction of cryptographically assigned Host
Identifiers changes the situation so that a replacement
for such an infrastructure emerges almost “magically”.

Double jump. If dynamic update is used, a situation
where both communicating nodes move simultaneously
becomes problematic. If there are no special arrange-
ments, the updates will cross within the network and
never reach the recipient nodes. Since both nodes have
moved, they do not know the new addresses of their
peers. Consequently, they cannot inform their peers
about their new addresses, leading to communication
outage. This problem is often called the double jump
problem.

There are various approaches to solve the double
jump problem. One is to combine packet forwarding and
dynamic update of bindings. Another one is to rely on a
separate naming service as the last resolt. That is, in the
case of a double jump the nodes make a query to the
naming service and thereby learn the new address(es) of
their peers.

Terminology. In the rest of this paper we mostly follow
the terms defined in the Mobile IPv6 standarization pro-
cess. A mobile node (MN) is a mobile device hosting
applications, i.e. an end-host that changes its point of
attachment. For the purposes of this paper, a mobile host
is synonym for a mobile node. A corresponding node is
a peer of a mobile node, i.e. a host that communicates
with a mobile host. A corresponding node may be itself

mobile. A home agent is a stationary node that provides
services to one or more mobile nodes. Usually the ser-
vices include packet forwarding, but they may include
also other services.

2.2 Multihoming

Multi-homing refers to a situation where an end-point
has several parallel communication paths that it can use.
Sometimes this is called multi-path or multi-access; in
this paper we do not make a distinction between these,
and just use the term multi-homing. Usually multi-hom-
ing is a result of either the host having several network
interfaces (end-host multi-homing) or due to a network
between the host and the rest of the network having re-
dundant paths (site multi-homing). At the first look, it
seems necessary to make a difference between site mul-
tihoming and end-host multihoming, since they seem to
have different problems. For example, a fundamental
problem associated with site multihoming is routing ta-
ble management. That is, the simplistic approach of as-
signing a single network address prefix to the site and
announcing this prefix through all paths leads to the so
called routing table explosion, i.e., scalability problems.

End-host multihoming seems to be easier to solve. To-
day most multihomed end-hosts are servers, but, for ex-
ample, a future mobile terminal with both GPRS and
WLAN connections would also be a multihomed end-
host. In this paper we mainly consider multihoming
from the end-host point of view. However, in Section 5.2
we argue that the proposed architecture will also solve
certain aspects of the site multihoming problem. Thus,
maybe end-host multi-homing and site multi-homing
are not that different, after all. In this paper we concen-
trate on end-host multihoming.

End-host multihoming. From our theoretical point of
view, a multihomed end-host is a node that has two or
more points-of-attachment with the rest of the network.

Figure 2: The multi-homing model

Topologically
slowly changing
internetwork

Possible points of attachmentSingly-homed hosts

A multihomed host

This is illustrated in Figure 2. This situation can be char-
acterized as the node being reachable through several
topological paths; the node is simultaneously present at
several topological locations. As a consequence, it also
has several network layer addresses, each of which
reflects one of the topological locations. In the general
case, the addresses are completely independent of each
other.

Connection management. Having several independent
network addresses makes the life of multihomed end-
hosts hard. That is, since the communication processes
are named with <address, TLI> pairs, the multihomed
host must select which address to use when a connection
is first opened. If it later wants to change the address
used, the situation is identical to the identifier update sit-
uation with mobile hosts, and leads to exactly same
security problems. Thus, as we will see, solving the
mobility problem automatically solves the end-host
multihoming problem as well.

3 Architecture

This section defines our Host Identifier based multi-
homing, mobility, and security architecture. In
Section 3.1, we outline the overall architecture as a lay-
ered structure. In Section 3.2 we give the exact defini-
tions for the required terminology and components. As it
turns out, just defining the terminiology in a new way
naturally leads to looking at the mobility and multi-
homing situation from a new point of view. That, in turn,
leads to the new architecture, and provides the basic fa-
cilities for multi-homing and mobility trivially, as dis-
cussed in Section 3.3. The end of this section discusses
the fine points of the architecture (Section 3.4) as well
as the resulting API (Section 3.5), while in Section 4 we
show how the new architecture also solves the security
problems currently hampering mobility and multihom-
ing.

3.1 Layered structure

It is easiest to describe our new architecture by compar-
ing it to the existing one. Figure 3 describes the current
architecture. In that, processes are bound to transport
layer sockets, and the sockets are identified by using IP
addresses and ports. More formally, the ports may be
called transport layer identifiers (TLI). As a result, this
structure binds the processes to a specific topological lo-
cation, thereby making process migration, end-host mo-
bility, and multi-homing hard.

The new structure is described in Figure 4. In the new
architecture, the transport layer sockets are no longer
named with IP addresses but with separate host identifi-
ers. The host identity layer translates the host identifiers
into IP addresses. This is achieved by binding a Host
Identifier to one or more IP addresses. This binding may
be a temporally dynamic relationship, resulting in
mobility support, and simultaneously a one-to-many
relationship, providing multi-homing support.

Bindings. Compared to the current architecture, the
new architecture results in different bindings between
the entities and identifiers. This is illustrated in Figure 5.
In the current architecture, IP addresses are used to de-
note both hosts (end-points) and topological locations.
In the new architecture, these functions have been sepa-
rated, and the hosts (end-points) are denoted with Host

Figure 3: The current internetworking architecture

Link (network) layer
Link layer addresses, e.g.
Ethernet MAC addresses

Internetworking layer IP addresses

Transport layer <IP addr, port> pairs

Process

sockets

(ARP or ND)
translation

Figure 4: The proposed new architecture

Link (network) layer
Link layer addresses, e.g.
Ethernet MAC addresses

Internetworking layer IP addresses

(ARP or ND)

Transport layer <HI, port> pairs

Process

sockets

Host identity layer Host identifiers

translation

translation

Identifiers. Furthermore, the binding between a Host
Identifier and the IP address(es) is made dynamic. As we
explain in Section 4, due to the cryptographic nature of
the Host Identifiers, it is fairly easy to secure the signal-
ling messages needed to update this binding.

Packet structure. At the logical level, the new archi-
tecture also requires changes to the packet structure.
That is, each packet must logically include the Host
Identifiers of the sender and recipient. However, when-
ever IPsec is used, the IPsec Security Associations can
be used as a shortcut for Host Identifiers, resulting in
packets that are similar to those used today. This is illus-
trated in Figure 6.

3.2 Components in detail

To make the architecture definition both definite and
rooted to reality, we next precisely define the relevant
concepts and terminology. While most of the concepts
are familiar to the intended reader, there are some sub-
tleties that are important. The relationships between the
concepts are also described pictorially in Figure 7.

Interface. A network interface. Usually a network in-
terface is a physical piece of equipment that a host uses
to connect to a network. For example, an Ethernet NIC
is such a piece of equipment. However, an interface may
also be completely virtual. For example, tunnel end-
points and virtual machine interfaces are virtual inter-
faces.

Each interface can be assigned one or more addresses.
The address(es) depend on the location(s) of the inter-
face. Even though the actual assignment mechanism is
irrelevant, it is important to understand that the assign-
ment is either determined or at least heavily influenced
by its topological point-of-attachment, i.e. location (see
below).

End-point. The logical end-point of communication,
i.e. a participant in an end-to-end communication.
[2][9][10]. In most cases end-points are identical to
hosts, and it is usually safe to think about hosts when
reading the architecture description. That is, typically a
physical node hosts a single end-point. The alternatives
and fine details are discussed in Section 5.4. (See also
Section 6 of [2].)

Process. A communicating process. Usually an end-
point hosts a number of processes. Sometimes an end-
point hosts only one process, but even then the end-point
and the process should be conceptually separated.
Within an end-point, the processes are distinguished
with Transport Level Identifiers (TLI), e.g. TCP and
UDP ports.

Location. A topological point-of-attachment at the net-
work. An end-point is said to be reachable at a certain
location if packets sent to that location are delivered to
the end-point. In [2] and [11] these are called as (Net-
work) Attachment Points.

Figure 5: Bindings

Bindings in the

Process Socket

IP address

Bindings in the

HIEnd-point

dynamic
binding

current architecture new architecture

Location

Process Socket

IP address

End-point

Location

DO

Figure 6: The packet structures

Logical new packet structure

IP HbH RH HIP DO ESP Upper layer

Packet structure in practise when ESP is used

IP HbH RH ESP Upper layer

HbH = Hop-by-Hop Header
RH = Routing Header
DO = Destination Option Header
ESP = Encapsulated Security Payload

Figure 7: The conceptual model, expressed in UML

End-point

Interface

Process

are hosted by>
1

*

has>

1

*

Location

is at>
0..1

*
Address names>

11 Path
2 *

Host ID
1 1

names>

Each location is assigned an address by the network.
We consider these addresses static, or at least very
slowly changing. In the case a single network provides
several global addresses for each host attached to the
network (site multi-homing), we consider that particular
network to represent several topological locations, one
location per address.

Address. A name of a location. In addition to acting as
location names, addresses also function as (partial) rout-
ing selectors. That is, the routers within the internetwork
use the address (and possibly other data) in making the
decision where a packet is passed next.

Topological path. A path, through the internetwork,
from one location to another location. We only consider
those paths separate that can be distinguished on a level
above the routing infrastructure. That is, parallel links
and redundant routes appearing within the routing func-
tion are not considered separate topological paths. A to-
pological path can be named with an address pair.

Multi-homed end-point. An end-point that is simulta-
neously reachable at more than one location, see
Figure 8. Usually this is a result of the end-point having
multiple interfaces, each separately connected to differ-
ent locations in the network. In the case of site multi-
homing, however, the whole site appears at two (or
more) topologically distinct locations. In this latter case,
the end-point may have just one interface, but that inter-
face is considered to be simultaneously at more than one
location, and therefore assigned more than one address.

Mobile end-point. An end-point that is serially reach-
able at more than one location, see Figure 9. Usually
this is a result of an end-point changing the location of
(one of) its interface(s). In a sense, mobility is the dual
of multi-homing in the same sense serialism is the dual
of parallelism.

Host Identifier. A public key of a key pair, used to
identify an end-point. We use the term Host Identifier
(HI) instead of the more accurate term end-point identi-
fier, mainly because we rely quite heavily on the
HLP/HIP proposal and want to be consistent with its ter-
minology.

Each physical node is assumed to generate one or
more public key pairs. The public key of such a pair is
used to identify an end-point hosted on that node. For
the purposes of this paper, it is safe to think that each
host is uniquely identified with a single key pair, and
therefore is identical to a single end-point. However,
there are reasons (such as anonymity, see [12]) to allow
a host to represent itself as a set of end-points, and to
allow the end-points to move between hosts; see
Section 5.4 and [1].)

The fact that the nodes generate their key pairs them-
selves lead to a suspicion that there is a possibility of
key collision, i.e. two nodes generating the same key
pair. However, the chance is extremely small. According
to the Prime Number Theorem the density of primes
near a given number is about . Thus, using
1024 bit RSA keys, and correspondingly about 512 bit
primes, the density of primes around is in the order
of , meaning that there are about

 primes of that size. According to the birthday
paradox, in a population of approximately is
expected to produce about one collision. Since the num-
ber of primes is about , the size of a population
required to produce an almost sure collision is about

. The other way of expressing
the density is to say that if distributed evenly, there are
more than 512 bit primes for each human.

3.3 Mobility and multihoming

It should be obvious by now that basic mobility and
multihoming becomes trivial in the new architecture.
That is, to support mobility all that is needed is to make

Figure 8: Two types of multihoming

End-point

Interface

1

*

Location

0..1

*
Address 11

Host ID
1 1

End-host
multihoming
when 1:N

Site multi-
homing
when 1:N

Figure 9: Mobility

End-point

Interface

1

*

Location

0..1

*
Address 11

Host ID
1 1

dynamic
relationship

n 1 nlogÚ

2512

1 512Ú 1 29Ú=
2 512 9–()

2n

2503

2 2503⋅ 2504 2252= =

10140

sure that the binding between (an interface belonging to)
a Host ID and IP address(es) is dynamic. Respectively,
to support multi-homing all that is required is to make
the binding into a one-to-many relationship.

To be more specific, in the presented architecture the
Host Identifiers are used to identify the communication
end-points, and they have no permanent relationship
with locations or IP addresses. IP addresses, on the other
hand, are used to identify only the topological locations,
not end-points. Thus, as a result, the actual addresses
used in a packet don’t matter so much as they do in the
current architecture, since the end-points are not identi-
fied with them. All that is required is that the end-points
are able to determine the addresses currently used by
their active peers.

Furthermore, if the packets are integrity protected
with IPSec, the recipient is always able to verify that a
received packet was sent by the alledged peer no matter
what the source and destionation addresses are. Thus, by
binding IPsec Security Associations to Host Identifiers
instead of IP addresses, the destination address becomes
pure routinting information, and the source address
becomes almost obsolete [13]. Only during connection
setup, when the hosts haven’t authenticated each other,
does the source address pay substantial role. Once the
peer hosts have secure bindings between the HIs and
addresses, the source address is not needed any more by
the hosts, and its only function becomes to carry infor-
mation about the topological path the packet has taken
[13].

However, beyond basic mobility and multi-homing
achieved with the separation of the identifying func-
tions, there are additional related problems that require
the architecture to be slightly augmented. That is, to
fully support mobility and end-host multi-homing, the
base architecture must be augmented with packets for-
warding agents.

Packet forwarding agents. Let us look at explicit
packet forwarding first. In the architecture, basic mobil-
ity support requires that the moving end-point sends sig-
nalling messages (location updates) to its peers. These
inform the peer about the changes in the addresses that it
can use to reach the host. Thus, in the basic case explicit
packet forwarding is not needed, since the hosts are able
to send packets directly to each other. However, this
leaves two problems unaddressed. Firstly, there must be
a mechanism that allows an end-point to be contacted
independent of its current location. Secondly, if two
end-points move at the same time, it is possible that the
signalling messages cross each other and never reach
their intended destination. This is usually called the dou-
ble-jump problem. Introducing packet forwarding

agents allows us to solve these two problems. In addi-
tion to solving these two problems, the solution intro-
duced allows us to optimize and localize signalling.

Thus, we define a packet forwarding agent as a net-
work node that forwards all packets sent to a given IP
address (virtual address) to another IP address (real
address).

In the current Mobile IP architecture, there are three
different kinds of entities that perform explicit packet
forwarding: the so called Home Agent, the Access Rout-
ers, functioning as temporary Home Agents, and the
Hierarchical MIPv6 [14] Mobile Anchor Points (MAP).
Each of these functions slightly differently, and needs a
slightly different security solution. However, looking at
the problem more closely, it becomes obvious that in all
these cases the explicit packet forwarding function is
just a single function, and there is little added value by
separating between different types of nodes.

Thus, to solve both the initial contacting and the dou-
ble-jump problems, an actually better solution is one
where there is just one packet forwarding function
instead of two different ones. To address double jump,
some node at the old location temporarily forwards
packets to the new location. Such a temporary forward-
ing agent can be created at any convenient point, it is not
restricted to the Access Router. To address the node
reachability problem, it is sufficient that the packet for-
warding function is available at some globally known
address or addresses, e.g. one(s) available at the DNS.
This set of nodes need not to be fixed, it just needs to be
stable enough to compensate the scalability problems
associated with dynamic DNS updates. Indeed, we
claim that for the huge majority of the forthcoming IPv6
nodes, the idea of having a single permanent address is
completely unnecessary and even unnatural. Further-
more, those nodes that benefit from a permanent address
are typically large servers, often wanting to have several
permanent addresses instead of a single one, and not
moving at all.

In summary, explicit packet forwarding is clearly
needed. We now generalize the concept of packet for-
warding agents and, at the same time, fold them into our
architecture.

Real and Virtual Locations. As discussed before, a
multi-homed host is considered to be present at several
locations at the same time. In functional terms, that
means that the host is able to receive packets sent to sev-
eral different IP addresses. On the other hand, if we have
a packet forwarding agent, the end-host is also able to
receive packets sent to the forwarded address. Thus, in a
sense the packet forwarding agent can be considered to

represent a virtual interface of the end-point, and that
the end-point is virtually present at the location of the
forwarding agent.

Consider the situation from a multi-homed host’s
peer’s point of view. The peer only sees a number of
addresses, and it knows that the multi-homed host is
reachable through all of these addresses. From the peer’s
point of view there is no difference whether packets sent
to a given address are forwarded or directly received by
the host. All that matters is that the packets eventually
reach the right destination end-point. Furthermore, since
all of the address bindings have a life time4, the fact that
the forwarding binding is a temporary one doesn’t make
a difference between direct and forwarded addresses.

Thus, we define that the location of an end-point is
the topological point through which the end-point is
able to receive packets. It may be the location of a phys-
ical interface of the end-point, or it may be the location
served by a packet forwarding agent. In the latter case,
the packet forwarding agent is considered to act as a vir-
tual interface for the end-point5. The situation is illus-
trated in Figure 10.

Optimizing signalling traffic. In addition to the above
mentioned basic reasons, there are also other reasons
why packet forwarding may be useful. Possibly Local
Mobility Management (LMM) [15] is the most impor-
tant of these. The goal of LMM is to reduce signalling
traffic between a mobile end-point and its peers by intro-
ducing one or more Mobility Anchor Points (MAP, also
called LMM agents) between the mobile end-point and
its path to the fixed network. If these Anchor Points

function as virtual interfaces, the mobile end-point can
hide the movement of its real interface from the peers
and only announce the virtual one provided by the
Anchor Point. Thus, whenever moving within the area
served by the Anchor Point, it is sufficient that the
mobile end-point signals the movement to the Anchor
Point, and the peers may remain unaware of movement.
This reduces the amount of signalling traffic required.

3.4 Architectural elements

Now we are ready to define the functional components
of our architecture. The basic components are the inter-
network, the communicating end-points, and the (tem-
porary) packet forwarding agents. Additionally, we need
two external services and four protocols. Firstly, there
must be a service and corresponding protocols that al-
low an end-point to learn the current set of addresses
that another endpoint has, i.e., an address discovery ser-
vice. Secondly, a protocol is needed to allow end-points
to inform their peers about changes in the addresses and
connectivity of their interfaces. Finally, a protocol is
needed for creating new packet forwarding agents, and
to signal changes to them. The architecture is described
pictorially in Figure 11.

Internetwork. The internetwork is based on stateless
IP level routers just as today. No changes are needed in
the network itself. All the currently used IP routers will
continue to function without any changes. This allows
the new architecture to be taken into use gradually, as
the hosts adopt the new functionality.

End-points. The communicating end-points are hosted
in network nodes. Each end-point is usually, but not nec-

4 Consider that in IPv6 basically all addresses have a
lifetime. Therefore it is necessary to have lifetimes in
the Host ID — IP address bindings as well. In the case
of IPv4 addresses, the lifetime can be e.g. a few
months.

Figure 10: The virtual interface model

Physical interfaces

Forwarding paths

Virtual interfaces

5 The usual way of implementing packet forwarding is
tunneling. Thus, denoting packet forwarding agents as
virtual interfaces is not so different from considering
tunnel end-points as virtual interfaces. However, in
the host identity based architecture tunneling is not
needed.

Figure 11: The elements of the architecture

Peer end-point

End-point

Internetwork
End-to-end sig

nallin
g protocolForwarding agent

Forwarding control protocol

Address
directory

Address query protocol

Address
update
protocol

essarily, associated with a single physical node. The
end-points are able to communicate in two ways. Firstly,
they may send plain IP packets just as today. In this
case, the IP addresses are used to name the target and
origin locations, and the end-point is supposed to stay at
the same location long enough to receive replies. This
form is suitable for fast low cost transactions, such as
DNS queries. Secondly, the end-points may run the Host
Layer Protocol (HLP), thereby authenticating the Host
Identifiers of each other as explained in Section 4.2.
This allows the end-points to communicate with added
security, mobility, and reliability. The internal structure
of the end-points is discussed in Section 3.5.

Packet forwarding agents. The packet forwarding
agents are hosted within the internetwork; for example,
in a typical case an access router would be willing to
provide such an function (see Section 4.3). They allow,
in a controlled way, end-points to receive packets that
are sent to an address (virtual address) that the end-point
does not currently control but that the forwarding agent
does. That is, upon request and after the necessary secu-
rity checks, a packet forwarding agent starts to intercept
packets sent to a particular address and to forward them
to another address. The first address is assumed to be
one that is controlled by the forwarding agent; for exam-
ple, such an address would be one that belongs to the
subnet controlled by an access router functioning as a
packet forwarding router. The second address is usually
an address where the receiving end-point is actually
located at, though it may be an address that is actually
intercepted by another forwarding agent.

A forwarding agent will continue to intercept and for-
ward packets only up to a maximum time, defined by a
policy local to the agent. Typically, this time will be in
the range of a few minutes, but in the case of semi-per-
manent agents it could be months or years. If desired, it
is the responsibility of the end-point to renew the for-
warding request before expiration.Thus, the forwarding
state at the forwarding agents is based on the concept of
leases, and therefore automatically cleared even in the
case of errors.

Address discovery. An initial contact between two
end-points requires that the initiating end-point learns at
least one IP address of the other end-point. This discov-
ery function is supposed to be implemented by a direc-
tory service, such as the DNS. The details of such a
service, e.g. whether it is possible to use the Host Identi-
fier as a key to look up IP addresses or some other type
of a key is needed, are beyond the scope of this paper.

Address updates. The updates in the end-point inter-
face status must be signaled to the peer end-points. This
is accomplished using the HIP Readdress Packets

(REA) [16]. The REA packets are protected in the Host
Identity Security Context; see Section 4.2 for details.

Forwarding control. The protocol to signal packet for-
warding is a function not defined in the HIP specifica-
tions, and therefore we discuss the situation in
Section 4.3. The actual function is quite similar to the
Mobile IPv6 Binding Update mechanism. That is, using
Binding Update to signal a Home Agent to change its
packet forwarding status is functionally similar to the
packet forwarding signalling within our architecture. On
the other hand, the security requirements and solution
are somewhat different.

3.5 Internal interfaces and APIs

The conceptual structure of a node hosting end-points is
depicted in Figure 12. The node has a number of inter-
faces, both physical and virtual. Usually each physical
interface is singly homed and has one global IP address,
and in IPv6 addionally one or more local addresses.
However, the site itself may be multi-homed, in which
case the host has several global IP addresses, and the
same local addresses (if any) that it had before. The vir-
tual interfaces represent forwarding agents and other
tunnel end-points that can be used to send packets to the
node. Each virtual interface is associated with one or
more IP addresses.

Within the host, the network layer implementation
takes care of routing, interface selection and other func-
tions as today. It is also supposed to take care of network
layer QoS services, if such exist. Basically, the network
layer is very similar to the one in the current architec-
ture.

Figure 12: The conceptual structure of an end-point

Physical
interface

IP address

Multihomed
interface

IP address
IP address

Virtual
interface

IP address

Forwarding
agent

Network layer

Address selection policy
Host Identity layer

Transport layer

Process Process Process

End-point End-point

Node

The new host identity layer implements the new func-
tionality. In a typical implementation, it would be
located in the operating system kernel. In some cases it
may provide facilities for hosting several parallel end-
points, but more typically there will be just one end-
point within a host. IIt is also responsible of implement-
ing the HLP/HIP end-to-end signalling protocol, and at
least conceptually also the forwarding control and direc-
tory query and update protocols. However, in an actual
implementation large parts of these protocols would
probably be implemented outside the operating system
kernel, communicating with the host identity layer
through administrative sockets similar to PFKEY or
routing sockets.

The transport layer implements transport protocols,
e.g. TCP and UDP, like today. The only difference is that
the transport layer sockets are bound to Host Identifiers
instead of IP addresses. Technically this is achieved by
representing the Host Identifiers in an IP address com-
patible way — see below. However, it is somewhat
unclear how to deal with SCTP; the SCTP multi-homing
functionality supports some of the multi-homing fea-
tures in our architecture, but not all. For example, SCTP
could even be used in a way where SCTP sees both a
Host Identifier and a number of IP addresses. However,
evaluating the benefits and drawbacks of different possi-
bilities are beyond the scope of this paper.

 Finally, the communicating processes function as
today. The only difference is that instead of IP addresses
they use Host Identifiers. This is achieved in a com-
pletely backward compatible way, where all well written
(IPv6) applications will continue to function without
recompilation. The basic idea is to reserve a large fac-
tion (actually half) of the IPv6 address space to repre-
sent host identifiers [17]. That is, the IPv6 compatible
format would be that of an Host Identity Tag (HIT),
which basically is the result of applying a hash function
on the Host Identifier6.

In an HIP aware host the DNS resolver library would
return an HIT if one is available, and otherwise an IPv6
address7. Transport protocols can then handle the HITs
or IPv6 addresses transparently. In the case of HITs, the
host identity layer would then perform the appropriate
conversion to both incoming and outgoing packets in a
way that is very similar to the so called host NAT [3].

4 Security

The introduction of host or end-point identifiers opens
up new security vulnerabilities. In the original TCP/IP
architecture, a host’s identity is implicitly authenticated
by the routing infrastructure. That is, since the hosts are
identified with IP addresses, and since IP addresses are
the fundamental piece of data used in routing, the very
definition of the internetwork assures that the IP packets
are indeed sent to the intended hosts. (See also [13].) In
the new architecture, there is no implicit binding be-
tween the host identifiers and the routing infrastructure.
Thus, the implicit authentication does not exist any
more, and a number of vulnerabilities emerge.

Fortunately, introducing public key cryptography
based host identifiers that are public keys fixes almost
automatically most of the new vulnerabilities. In this
section we look at the situation more briefly, starting
from the nature of the new identifiers, and continuing to
the properties of the new signalling protocols and new
functions. A more thorough security description is a
subject of a companion paper [19].

4.1 Host Identifiers

The cryptographic nature of the Host Identifiers is the
security cornerstone of the new architecture. Each end-
point generates exactly one public key pair. The public
key of the key pair functions as the Host Identifier. The
end-point is supposed to keep the corresponding private
key secret and not to disclose it to anybody. (Note, how-
ever, that e.g. due to privacy reasons a single user may
want to be represented by several end-points at the net-
work.)

The use of the public key as the name makes it possi-
ble to directly check that a party is actually entitled to
use the name. A simple public key authentication proto-
col, such as the one included in the HIP exchange, is
sufficient for that. Compared to solutions where names
and cryptographic keys are separate, the key-oriented
naming does not require any external infrastructure to
authenticate identity. In other words, no explicit Public
Key Infrastructure is needed. Since the identity is repre-
sented by the public key itself, and since any proper
public key authentication protocol can be used to check
that a party indeed possesses the private key correspond-
ing to a public key, a proper authentication protocol suf-6 In this paper we do not consider old IPv4 applications

at all. The HIP drafts propose the concept of a Local
System Identifier (LSI) which could be used to make
them to work as well, but that is beyound the scope of
this paper.

7 If the peer has only an IPv4 address, the resolver
library would return the IPv4 address in the IPv6 com-
patible format.

fices to verify that the peer indeed is entitled to the
name.

This property of being able to verify the identity of
any party without any explicit external infrastructure is
the very cornerstone of our architecture. It allows the
architecture to scale naturally, without requiring extra
administrative overhead.

4.2 Host Layer Protocol (HLP)

The Host Layer Protocol/Host Identity Payload
(HLP/HIP) is the end-point to end-point signalling pro-
tocol in our architecture. The details of the current pro-
tocol proposal are available as internet drafts [1][16][17]
and beyond the scope of this paper. The basic security
properties of the protocol are significant and explained
briefly.

Most importantly, the HLP/HIP protocol performs
mutual end-to-end authentication. This is accomplished
with a four-way handshake, consisting of messages I1,
R1, I2 and R2 (see Figure 13). After exchanging the ini-
tial HLP messages, both communicating hosts know
that at the other end-point there indeed is an entity that
possesses the private key that corresponds to its Host
Identifier. Additionally, the exchange creates a pair of
IPSec Encapsulated Security Payload (ESP) security
associations, one in each direction. The hosts are sup-
posed to use the ESP security associations to protect the
integrity of the packets flowing between them; option-
ally, ESP can also be used to encrypt the packets. Note
that in the first message (I1) the responder’s HIT may be
NULL, indicating opportunistic mode of operation.

Once the authentication protocol has been exceuted
and the initial multi-homing situation is established end
verified, the end-points may communicate in an secure
and resilient way. As the connectivity status of the end-
points change they may signal the changes in the situa-

tion as needed. That is, if an end-host looses connectiv-
ity on an interface, acquires a new interface, or moves an
interface from one location to another, it typically wants
to signal the change to its peers. The HLP/HIP protocol
includes the Readdressing Packet (REA) for this pur-
pose. Naturally, all the REA packets must be secured
with the Host Identity Security Context, and any new
addresses must go through the Return Routability test.

4.3 Privacy

Using public keys as primary identifiers is clearly a po-
tential source of privacy problems. If each user had just
a single public key and that key is repeatedly used by the
user, the very nature of public key cryptography leads to
a situation where it is fairly easy to link together all the
transactions made by the user. In the case of the
HLP/HIP architecture, the situation does not need to be
that bad. Since a single computer may host several end-
points and therefore have several Host Identifiers, it is
easy for a user to have several public keys instead of just
one. One public key can be used as a more permanent
identifier, allowing others to contact the user, while
other keys can be completely temporary and periodi-
cally replaced with new ones. A temporary Host Identi-
fier needs to be valid only as long as there are active
connections associated with it.

5 Analysis

In Sections 3 and 4 we have presented the new architec-
ture and discussed its security properties. In this section
we return to a number of points that were briefly men-
tioned in Section 1 but that can be thoroughly discussed
only now. We start in Section 5.1 by rehersing our claim
that instead of adding functionality to the top of the in-
ternetworking layer it seems to be beneficial to add a
completely new layer. Section 5.2 discusses site multi-
homing and Section 5.3 how the architecture can be ap-
plied to optimize the locality of signalling traffic. Fi-
nally, Section 5.4 discusses user and process mobility.

5.1 New layer or not

In Section 1.1 we argued that a new name space is
clearly needed, but that in addition to that we also need a
new protocol layer. The latter need is more questionable,
and therefore we want to return to it for a moment.

Opening an HLP/HIP based connection is a fairly
heavy operation. It requires two round trips across the
network, and involves public key cryptography. Thus,
HLP/HIP is clearly unsuitable for light weight transac-

Figure 13: A typical HIP session

Initiator Respondent
I1: <HITI, HITR or NULL>

R1: <HITI, HITR, challenge>

I2: <HITI, HITR, response, authentication>

R2: <HITI, HITR, authentication>

Security Context established

Initial
exchange

ESP protected messages

tions where no end-point based security is needed. DNS
queries may be considered the prime example of this;
besides, since the HLP/HIP identifiers and addresses of
the hosts are stored in the DNS, trying to establish a HIP
connection with a DNS server would most probably
bring forth a chicken-and-egg problem.

Thus, HLP/HIP provides additional utility values at a
cost. That is, a HLP/HIP connection facilitates security,
mobility, and multi-homing, on the cost of a relatively
heavy set-up. There are clearly services where it is bene-
ficial to pay the cost, e.g. streaming, long lived TCP
connections, communicating with a virtual home server,
etc. On the other hand, there are also services to whom
the cost would be detrimental, DNS queries being the
prime example. Consequently, providing HLP/HIP as a
separate protocol layer that applications may or may not
use seems like the right approach.

5.2 Site multi-homing issues

In this paper we have almost solely considered end-host
multi-homing. As we mentioned in Section 2.2, limited
site multi-homing may not be that different from end-
host multi-homing. That is, if site multi-homing is im-
plemented by distributing several externally visible IP
addresses to the hosts at the site, the multi-homing prob-
lems can be essentially solved by considering each of
the hosts being separately multi-homed.

Another approach to site-multihoming is to tackle it
from the routing infrastructure point of view. As dis-
cussed e.g. by Chiappa [18], it is possible to distribute
the IP addresses in such a way that the routing table
explosion is avoided even under heavy site multi-hom-
ing. However, such an approach would essentially
require rethinking the whole address assignment
approach, and most probably necessitate the develop-
ment of new protocols to address the practical problems
involved.

5.3 Amount and locality of signalling
traffic

In Sections 3.3 and 4.3 we discussed the packet forward-
ing function, and noted that one potential benefit from it
is the ability to optimize signalling traffic. That is, by in-
troducing a packet forwarding agent at or close the path
that packets take between a mobile node and its peer, we
may limitate the signalling traffic between the mobile
node and the packet forwarding agent only. Thus, the
packet forwarding agent essentially hides the mobile

node’s movements as long as the mobile node stays “be-
hind” it. In Hierarchical MIPv6 [14] terms this function
is performed by a Mobile Anchor Point (MAP).

The basic mechanism utilized in our architecture is
structurally identical to that of HMIPv6. What makes
our architecture different is its generality. The packet
forwarding agent providing the mobility anchor point
service is no different from packet forwarding agents
used for other purposes. Consequently, the same infra-
structureless security solutions can be used here than in
other cases (see Section 4.3). It suffices that there exists
a protocol that allows a mobile node to locate packet
forwarding agents that are likely to be useful from the
signalling optimization point of view.

5.4 User and process mobility

Without going too deep, we also want to note that the
separator of locators and end-point identifiers indirectly
facilitates user mobility and process migration. Since
our architecture allows a node to host several end-point
identifiers, the identifiers can be given different roles.
For example, some of the identifiers may be associated
with a user or a distinct process group. Given sufficient
means for transferring cryptographic keys, process
states and communication contexts (migration), the ar-
chitecture makes it possible to painlessly move pro-
cesses from one device to another. That, in turn, faciliti-
ates user mobility when combined with suitable user
interface means.

Thus, user mobility and process migration is easily
supported in our architecture from the communications
point of view. If a host can save all the communication
state associated with a given end-point identifier, and
another host can restore the state, it is easy to continue
the actual data transfer without any special means. Even
the case where both ends are frozen (serialized) for a
period of time and later become online simultaneously
is supported, given that at least one end has a long lived
packet forwarding agent within the network.

6 Conclusions

The focus on this paper has been mobility and multi-
homing support by modifying the TCP/IP architecture to
include a new name space and a new protocol layer. We
have provided one possible design, heavily based on the
HLP/HIP approach. Furthermore, we have briefly
touched the backward compatibility and API issues.

To sum up, the HLP/HIP approach provides new end-
point names that are public keys. For convenience, the

public keys are usually represented by tags derived by
taking a cryptographic hash function over the key. The
tags are used instead of IP addresses when representing
the communicating parties to the applications. Along
with the new names, a new layer is established between
the network and transport layers. This layer takes care of
establishing secure connection between any two end-
points, translating the outgoing end-point names into IP
addresses and determining the names from the security
associations on incoming packets, and securely modify-
ing the translation state to reflect the current multi-hom-
ing and mobility status.

From our point of view, the main benefit of the new
name space and associated protocol layer is added secu-
rity. Since the end-points are identified (and not merely
named) with public keys, the architecture makes it easy
to create a security context between any two end-points.
This, in turn, makes it trivial to address the security
requirements inherent to end-host mobility and multi-
homing. Additionally, since the communication context
is bound to the end-point identifiers instead of IP
addresses, the architecture also makes it easier to sup-
port several routing realms and to establish state with
any node in the network. That is, Network Address
Translation (NAT) and other middle box communication
(MIDCOM) problems seem to be easier to solve with
HLP/HIP than without. For example, the packet for-
warding agent function introduced in this paper may be
considered as one type of Network Address Translation.
On the other hand, the security context is not, as such,
suitable as a generic application level end-to-end secu-
rity solution. To achieve application level semantics, the
end-points need additional assurances about their peers.

Compared to the Mobile IP architecture, our architec-
ture provides more flexibility and resilience. In our
architecture, it is possible to relocate any packet for-
warder at any convenient time.In Mobile IP, it is not safe
to relovate a Home Agent into a topologiclly different
location as long as there are active communications that
use the Home Address assigned by that Home Agent.
Secondly, our architecture easily supports what would
be multiple parallel Home Agents in Mobile IP. That is,
it is natural to have multiple parallel semi-permanent
packet forwarders that are equal and may reside in com-
pletely different locations. In Mobile IP, it is possible to
have several parallel Home Agents, but each connection
is necessarily bound to only one Home Address, thereby
making it impossible for the topologically distinct
Home Agents to work as back ups for each other.

From the architectural point of view, in our architec-
ture it is sufficient to have just one mechanism to solve
the reachability, double-jump, and local signalling opti-

mization problems. In Mobile IP, Home Agents are used
to solve the reachbility problem, temporary Home
Agents to optimize the double jump problem, and
Mobile Anchor Points to localize signalling.

From the security point of view, no separate mecha-
nism is needed to secure mobility related signalling
since the security inherent to the architecture suffices.

Thus, we have shown how the use of public keys as
end-point names leads to a natural security solution for
end-host mobility and multi-homing. In the companion
papers [5][19] we have discussed the security issues in
detail shown how the architecture can be extended to
address the network mobility problem.

Acknowledgements

This work would have been impossible without the pio-
neering work performed by a number of senior research-
ers and engineers at the IETF, IRTF, and elsewhere. We
are especially indebted to the insights of J. Noel Chi-
appa, and their application in the form of the HLP/HIP
proposals by Robert Moskowitz. The insights made by
the IRTF Name Space Research Group have allowed us
to further refine our thinking.

We want to thank our colleagues Catharina Candolin,
Miika Komu, Yki Kortesniemi, Glenn Morrow, Martti
Mäntylä, Alexandru Petrescu, Teemu Rinta-Aho, Göran
Schultz, Vesa Torvinen, Zoltan Turanyi, and especially
Juha Heinänen and Jarno Rajahalme, for their construc-
tive comments on various versions of this paper. We also
want to thank Petri Jokela and Tony Jokikyyny for their
contributions to the actual text.

References

[1] R. Moskowitz, Host Identity Payload Architec-
ture, work in progress, Internet Draft (expired),
February 2001, http://homebase.
htt-consult.com/draft-moskowitz-
hip-arch-02.txt

[2] J. N. Chiappa, Endpoints and Endpoint Names: A
Proposed Enhancement to the Internet Architec-
ture, unpublished note available at
http://users.exis.net/~jnc/tech/
endpoints.txt

[3] S. Bellovin, EIDs, IPsec and HostNAT, a presen-
tation give at 41st IETF in Los Angeles, Califor-
nia. Steven Bellovin, March 1998,
http://www.research.att.com/~smb
/talks/hostnat.pdf

[4] E. Lear, What's In A Name: Report from the
Name Space Research Group, work in progress,

Internet Draft draft-irtf-nsrg-report-02.txt, Inter-
net Research Task Force, February 2002.

[5] P. Nikander and J. Arkko, “Delegation of Signal-
ling Rights,” a position paper presented at the
10th Annual Workshop on Security Protocols,
Cambridge, April 17–19, 2002.

[6] I. Castineyra, N. Chiappa, M. Steenstrup, The
Nimrod Routing Architecture, RFC1992 (Infor-
mational), IETF August 1996.

[7] P. Bhagwat, C. Perkins and S. Tripathi, “Network
Layer Mobility: an Architecture and Survey”,
IEEE Personal Communications Magazine, June
1996.

[8] P. Nikander, Denial-of-Service, Address Owner-
ship, and Early Authentication in the IPv6 World,
presented at Cambridge Security Protocols
Workshop 2001, April 25-27, 2001, Cambridge
University. To be published in the workshop pro-
ceedings at the LNCS series.

[9] J. H. Saltzer, David Reed and David Clark, “End-
To-End Arguments in System Design”, ACM
Transactions on Computer Systems, Vol. 2, No.
4, November 1984.

[10] B. Carpenter, “Architectural Principles of the In-
ternet”, RFC 1958, IETF June 1996.

[11] J. H. Saltzer, “On The Naming and Binding of
Network Destinations,” in Local Computer Net-
works, edited by P. Ravasio et al., North Holland,
Amsterdam, 1982, pp. 311-317. Also available as
RFC 1498, University of Southern California, In-
formation Sciences Institute, Marina Del Rey,
Calif., August 1993.

[12] R. Moskowitz, The Need for a new Internet
Namespace, informal note in circulation, Robert
Moskowitz, November 1999.

[13] C. Candolin and P. Nikander, “IPv6 Source Ad-
dresses Considered Harmful,” in Hanne Riis

Nielson (ed.), Proceedings of NordSec 2001,
Sixth Nordoc Workshop on Secure IT Systems,
November 1-2, Lyngby, Denmark, Technical Re-
port IMM-TR-2001-14, pp. 54-68, Technical
University of Denmark, November 2001.

[14] Hesham Soliman, Claude Castelluccia, Karim
El-Malki, Ludovic Bellier, Hierarchical MIPv6
mobility management (HMIPv6), work in
progress, Internet Draft draft-ietf-mobileip-
hmipv6-05.txt, July 2001.

[15] Carl Williams (Editor), Localized Mobility Man-
agement Requirements for IPv6, work in
progress, Internet Draft draft-ietf-mobileip-lmm-
requirements-00.txt, November 2001.

[16] R. Moskowitz, Host Identity Payload and Proto-
col, work in progress, Internet Draft draft-mosk-
owitz-hip-05.txt, November 2001, http:
//homebase.htt-consult.com/draft
-moskowitz-hip-05.txt

[17] Robert Moskowitz, Host Identity Protocol Imple-
mentation, work in progress, Internet Draft (ex-
pired) draft-moskowitz-hip-impl-01.txt, Feb
2001, http://homebase.htt-consult.
com/draft-moskowitz-hip-impl-
01.txt

[18] J. Noel Chiappa, discussion at the IETF multi6
mailing list, December 2001,
ftp://ops.ietf.org/pub/lists/200
1/multi6.0112

[19] P. Nikander, J. Ylitalo, and J. Wall, “Integrating
Security, Mobility, and Multi-homing in a HIP
way”, to appear in Proceedings of Symposim on
Network and Distributed Systems Security
(NDSS’03), San Diego, February 2003, Internet
Society 2003.

	A fresh look at IP based Mobility and Multi-homing
	Abstract
	1 Introduction
	1.1 Need for a new protocol layer
	1.2 Original contributions
	1.3 Paper structure

	2 Background
	2.1 Mobility
	2.2 Multihoming

	3 Architecture
	3.1 Layered structure
	3.2 Components in detail
	3.3 Mobility and multihoming
	3.4 Architectural elements
	3.5 Internal interfaces and APIs

	4 Security
	4.1 Host Identifiers
	4.2 Host Layer Protocol (HLP)
	4.3 Privacy

	5 Analysis
	5.1 New layer or not
	5.2 Site multi-homing issues
	5.3 Amount and locality of signalling traffic
	5.4 User and process mobility

	6 Conclusions

	Acknowledgements
	References

