
Weiwei Hu

Proxy for Host Identity Protocol

Aalto University
Department of Computer Science and Engineering
Data Communication Software Group

AALTO UNIVERSITY ABSTRACT OF THE MASTER'S THESIS

Author: Weiwei Hu

Name of the thesis: Proxy for Host Identity Protocol

Date: April 22, 2010 Number of pages: 59

Department: Department of Computer Science and Engineering

Professorship: T-110

Supervisor: Professor. Antti Ylä-Jääski
Instructors: M.Sc. Miika Komu

In computer networks, a proxy acts as an intermediary computer system or an appli-
cation program which serves the requests of its clients by forwarding their packets or
data �ows to some servers. Host Identity Protocol (HIP) provides security extension
as well as mobility on top of TCP/IP stack. However, HIP requires some changes to
the networking stacks which can be considered as a deployment obstacle. A HIP proxy
provides a solution which can provide a transition path towards HIP-capable networks.

In the context of this thesis, a HIP proxy translates packet �ows from legacy clients
to HIP-capable servers without requiring any HIP-development at the client side. The
goal of this master thesis is to design and implement a prototype of a HIP proxy which
supports basic protocol translation from non-HIP based communications to HIP based
communications.

In this thesis, We also present a performance analysis of the implemented prototype
against communications without the proxy. We also compare the design of the proxy
against another and describe future work items, such as server-side HIP proxy.

Keywords: HIP, Host, Identity, Protocol, proxy, translation, split, location, VPN

ii

Acknowledgements

This Master's thesis has been done for a part of the InfraHIP project, which is a
co-operation project of Helsinki Institute of Information Technology (HIIT), Helsinki
University of Technology (Aalto University) and RWTH Aacher.

I would like to thanks my supervisor Antti Ylä-Jääski to o�er the opportunity to
work with the development team in HIIT. Special thanks to my instructor Miika
Komu for expertise help with HIPL. His comments and corrections have helped to
maintain steady progress with thesis.

Sincere thanks to all the people in the InfraHIP project and colleagues in the DSC
group for providing such a nice working environment. It has been a pleasure to work
with you all.

This work is dedicated to my wife Liu Wei for all her love and encouragement she
has given to me. I want to give a big thank to my parents for their support in my
study and life.

Espoo, April 22, 2010

Weiwei Hu

iii

Contents

Terms and Abbreviations vii

1 Introduction 1

1.1 Goals . 2

2 Background 3

2.1 TCP/IP . 3

2.1.1 TCP/IP architecture . 3

2.1.2 IPv4 vs IPv6 . 4

2.2 Host Identity Protocol . 5

2.2.1 A New Namespace . 5

2.2.2 A New Layer . 6

2.2.3 HIP packet structure . 7

2.2.4 HIP Base Exchange . 7

2.2.5 HIP opportunistic mode . 8

2.3 NAT Traversal . 10

2.3.1 Types of NATs . 10

2.3.2 Teredo . 11

2.3.3 Interactive Connectivity Establishment 11

2.4 HIP and IPSec . 12

2.4.1 Bound End-to-End Tunnel (BEET) 12

2.4.2 Internet Protocol Security (IPSec) with HIP 13

2.5 Sockets API . 14

2.6 IPQ Library . 16

3 Design 19

iv

3.1 HIP Proxy . 19

3.1.1 Databases in HIP Proxy . 19

3.1.2 Four scenarios for HIP Proxy Design 21

3.2 Architecture . 23

3.2.1 HIP Firewall State Machine 23

3.2.2 Outbound Processing Model 24

3.2.3 Inbound Processing Model . 26

3.3 HIP proxy and hipconf extension . 26

4 Implementation 28

4.1 HIP Proxy . 28

4.1.1 Data Structure in HIP Proxy 29

4.1.2 Databases in HIP Proxy . 29

4.2 HIP Firewall State Machine . 31

4.2.1 Packet Processing . 31

4.2.2 Interaction between the Components 32

4.3 Outbound Processing . 33

4.3.1 Connection Establishment . 33

4.3.2 Packet Processing . 34

4.4 Inbound Processing . 34

4.4.1 Packet Processing . 34

4.5 Protocol Translation . 35

5 Analysis 36

5.1 Testing Environment for Performance Evaluation 36

5.1.1 Test Platforms . 36

5.1.2 Test Software and Con�guration 37

5.1.3 Test Procedure . 37

5.2 Results and Analysis of Performance Measurements 38

5.2.1 TCP Throughput . 38

5.3 Issues for ICMP . 39

5.4 An Issue with FTP . 39

5.5 Compatibility Assurance with Other HIP Extensions 42

5.5.1 HIP Firewall . 42

v

5.5.2 NAT Traversal . 42

5.5.3 HIP Opportunistic Mode Extensions for TCP 44

5.5.4 HIP Userspace IPSec . 44

5.6 Comparison to Ericsson Implementation 45

6 Future Work 46

6.1 Client side HIP Proxy . 46

6.1.1 ICMP Protocols Support . 46

6.1.2 Referrals . 46

6.2 Server side HIP Proxy . 46

6.2.1 Architecture and Design . 47

7 Conclusion 48

vi

Abbreviations

AID Application Identi�er

API Application Programming Interface

DSA Digital Signature Algorithm

DHT Distributed Hash Table

DNS Domain Name System

DoS Denial of Service

ED Endpoint Descriptor

FQDN Fully Quali�ed Domain Name

FTP File Transfer Protocol

HAA Host Assigning Authority

HIP Host Identity Protocol

HI Host Identi�er

HIPL HIP for Linux

HIT Host Identity Tag

IETF Internet Engineering Task Force

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IPsec Internet Protocol security

LSI Local Scope Identi�er

PEM Privacy Enhanced Mail

vii

PKI Public Key Infrastructure

POSIX Portable Operating System Interface

QoS Quality of Service

SA Security Association

SP Security Policy

SRV Service Record

SSH Secure Shell

TCP Transport Control Protocol

TLI Transport Layer Identi�er

UDP User Datagram Protocol

UI User Interface

UID User ID

WLAN Wireless Local Area Network

XTI X/Open Transport Interface

viii

Chapter 1

Introduction

Internet is widely used all around the world. The number of internet users is growing
as well as the number of user equipments connected to those networks. The networks
are also becoming increasingly more interconnected.

The current Internet architecture is based on IPv4 which has been invented 20 years
ago. Since the development of the network technology, it cannot meet its new re-
quirements any more. For example, mobility and security are not supported by the
initial design of the internet architecture. IP addresses are used to route tra�c from
the source to the destination node as well as serving as the identi�ers of the nodes.
When a node moves to another location in the network topology, the IP address of
the node usually changes and, hence, its identi�er also changes. This means the same
node has di�erent identi�ers on di�erent locations. This causes many problems, in-
cluding disrupting of TCP-based media streams, because the identity of transport
layer connection is coupled with the network layer location. Fortunately, a number
of solutions address this problem, for example Mobile IP. Many of the solutions are
workarounds for the current network architecture and are therefore overly compli-
cated or ine�cient. Thus, more straightforward solutions are called for.

Several alternatives have been proposed to extend or redesign the current TCP/IP
architecture to face the new challenges of the Internet. Host Identity Protocol (HIP)
is OK and was also chosen as the experimentation framework for this thesis. HIP
separates the coupled functionalities of the current TCP/IP suite: node identi�er
and its location. Host Identity (HI) provides the node identi�er functionality in HIP
and it is e�ectively a public key. The IP address acts as a locator that provides only
routing information for the current node. In HIP, the transport layer is bound to HIs
and they are translated dynamically to IP addresses by HIP layer. This introduces
persistent and location-independent identi�ers to the existing Internet architecture,
hence allowing e.g. TCP streams to survive network changes.

To support the security, each HIP-capable host has an asymmetric key pair. The
public part of the key acts as the HI of the host. HIP authenticates two end-hosts
to each other using four-way Di�e-Hellman procedure called base exchange. This

1

CHAPTER 1. INTRODUCTION 2

also sets up the symmetric key material for IPSec.

The introduction of HIP layer, and in certain cases also IPSec, requires additional
software installation at the client and server side. Deployment at both sides can
introduce a high cost for HIP deployment. As there are more client hosts in the
Internet, we have chosen to mitigate client HIP support to HIP based proxies in
order to boost HIP deployment.

1.1 Goals

Millions of client-side hosts exist in the current Internet. The deployment of HIP
to all end-hosts can take several years. Upgrading all legacy end-hosts one-by-one
can be expensive and some production environments running rather old OS versions
may never be upgraded. Thus, a transition mechanism for legacy end-hosts seems
useful.

The main goal of this thesis is to implement a HIP proxy which provides translation
services between legacy end-clients and HIP-capable servers. A HIP proxy intercepts
network tra�c and tries to translate it from IP to HIP or vice versa:

• When the HIP proxy receives non-HIP tra�c destined to a HIP-capable server,
the proxy performs a base exchange with the HIP-capable server and translates
the packet into an ESP tunnel.

• When the HIP proxy receives tra�c from an ESP tunnel, it translates the
packet to a non-HIP packet and forwards it to the correct client.

• The proxy translates only non-HIP connections originating from legacy clients.
It does not translate connections originating from HIP-capable clients.

This thesis is organized as follows:

Chapter 2 presents some background for the work, the current and HIP-based Inter-
net architecture. We also discuss some HIP protocol extensions.

Chapter 3 focuses on the design of HIP proxy. We illustrate the architecture and
interface in detail.

Chapter 4 presents the details of the implementation of the HIP proxy. Di�erent
scenarios of HIP proxy are also introduced.

Chapter 5 presents the result of the performance analysis and compatibility with HIP
extensions. The chapter also shows experimentation results with some application-
layer protocols.

In Chapter 6 and Chapter 7, the future work and conclusions are presented.

Chapter 2

Background

This chapter presents an overview of the background topics. The focus of this chapter
is on the current network stacks and their drawbacks. HIP and its extension are
described in the end of this chapter.

2.1 TCP/IP

2.1.1 TCP/IP architecture

Today's TCP/IP architecture presents itself as a multi-layer architecture. Each layer
has a set of roles related to the transmission and reception of data, and provides
services and interfaces to the upper layer protocols. Upper layers are logically closer
to the user and deal with more abstract data, relying on lower layer protocols to
translate data into forms that can eventually be physically transmitted [32].

TCP and IP are the main protocols in the TCP/IP architecture, which is generally
divided into four abstraction layers [4]. Figure 2.1 visualizes four layers: application
layer, transport layer, internet layer and network interface layer.

Application layer basically consists of application programs and user interfaces. It
refers to the higher-level protocols used by most applications for network communi-
cation. Examples of application layer protocols include the FTP and HTTP [30]. An
application marshals its data structures into one or more transport layer protocols
according to the application layer protocol. Then, transport layer passes the data
to network layer.

Transport layer provides end-to-end connectivity between hosts. It de�nes the level
of service and status of the connection used when transporting the data [5]. The
main protocols that are used in this layer are TCP [23] and UDP [22].

The responsibility of the internet layer is to deliver IP packets between hosts in
networks. Routing of packets is handled at the internet layer. With the advent of
inter-networking, this layer provides functionalities to deliver data from the source

3

CHAPTER 2. BACKGROUND 4

Figure 2.1: Network Stack
[5]

network to the destination network hop-by-hop. This is generally called packet
routing. The protocols for the maintenance and boot strapping for Internet layer
are ICMP ARP, RARP and IGMP.

Network interface layer is responsible for specifying how the data will be sent through
the network physically. This layer handles how bits are electrically signaled by the
hardware devices that interface directly with a network medium such as the coaxial
cable or the twisted pair copper wire[18]. Protocols operating at this layer include
the "Token Ring", "Ethernet", FDDI and IEEE 802x.

2.1.2 IPv4 vs IPv6

IPv4 has been widely deployed and used in the Internet today. With the rapid
growth of the Internet, improvements to the internet protocol are needed to support
the in�ux of new subscribers, Internet-enabled devices and applications. IPv6 is
designed to enable the larger expansion of the Internet with over more IP-based
devices.

The larger address space a�ected by IPv6 is the most important feature compared
to IPv4. An IPv6 address is 128 bits long, while IPv4 address size is 32 bits. The
IPv6 address space provides 2128 addresses which is 296 times larger than what IPv4
can provide. With IPv6, each people in the world could have roughly 5x1028 IP
addresses.

IPv6 also brings also major changes to the IP header. The header of IPv6 is more
�exible and contains fewer �xed �elds. Option �elds in the header have been replaced
by a set of optional extensions in IPv6.

The header of IPv6 is e�cient, which can be seen by comparing the address to the
size of header. Even though an IPv6 address is four times as large as an IPv4 address,

CHAPTER 2. BACKGROUND 5

Figure 2.2: IPv4 vs IPv6

the header is only twice as large. Figure 2.2 presents the di�erent structures in the
IPv4 header and IPv6 header.

Options can increase the size of the IPv4 header which are absent from the IPv6
header. Instead, Next Header �eld in the IPv6 header indicates the existence of
options in the header. For routers, they would just check the Next Header �eld to
identify the existence of options instead of parsing the whole IPv6 header. Thus,
the simpler structure of the IPv6 facilitates faster packets processing time in routers
when options are present.

Security for IPv6 is a �rst class citizen rather than an add-on feature. For example,
IPSec is optionally available for IPv4 implementations while it is an integral part of
the security model of IPv6. IPv6 also includes an end-to-end security model that is
designed to protect DHCP, DNS [14] and IPv6 mobility [6].

2.2 Host Identity Protocol

In this section, we give an overview of HIP and its related extensions.

2.2.1 A New Namespace

HIP introduces a new namespace for the Internet. The namespace provides location
independent identi�cation of endpoints. This decouples the network-layer identi�ers
from the upper-layer identi�ers and provides mobility and multi-homing capabilities
at the network layer [19]. In HIP, a host has a �xed endpoint identi�er but multiple
changing network layer addresses. The decoupling allows more �exible mobility

CHAPTER 2. BACKGROUND 6

support since the location can be dynamically associated to the identity [33].

HI

In HIP, a HI presents an endpoint. A HI is basically the public key of an asym-
metric key pair. Using a public key based HI, the security of the communication
and end-host authentication are improved. HIP supports Rivest Shamir Adelman
(RSA/SHA1) [1] public key algorithm and Digital Signature Algorithm (DSA) [7]
algorithms. By using cryptographic end-point identi�ers, end-host impersonation
becomes di�cult in HIP.

HIT

A hashed encoding of the HI, the Host Identity Tag (HIT), is used in upper-layer pro-
tocols to represent the Host Identity. A Host Identity Tag is a 128-bit representation
for a Host Identity. Its �xed length suits better in protocol encoding and decreases
control packet size. In addition, it presents the identity in a consistent format to
the upper-layer protocol independent of the cryptographic algorithms used. HIT
is the same length as an IPv6 address which can be used directly in IPv6 capable
applications and APIs. On the other hand, it is designed to be self-certifying and
the probability of a HIT collision between two hosts is very low.

In HIP control packets, the HITs identify the sender and recipient of a packet.
Consequently, a HIT should be unique in the whole IP universe as long as it is being
used. In the extremely rare case of a single HIT mapping to more than one Host
Identity, the Host Identi�ers (public keys) will make the �nal di�erence. If there is
more than one public key for a given node, the HIT acts as a hint for the correct
public key to use.

LSI

The Local Scope Identi�er (LSI) is a 32-bit localized representation for a HI. It
facilitates using HIs in existing protocols and APIs. An LSI has the same length as
an IPv4 address so that it can support IPv4-only legacy applications. LSIs are only
valid in the context of the local host. The disadvantage of LSI is its local scope [16].

2.2.2 A New Layer

In the current Internet model, IP addresses are used for routing. Each IP address
represents a physical location in the internet, hence, acting as a locator. Meanwhile,
the IP address also names an end-point. HIP separates the end point names and
locators from each other. The Host Identi�er takes the responsibility of naming
endpoint and IP address still act as a routing locator. HIP requires a translation
mechanism between host identi�ers and IP addresses because host identi�ers are not

CHAPTER 2. BACKGROUND 7

Figure 2.3: HIP Stack
[16]

Figure 2.4: HIP Packet Structure
[17]

routable. Therefore, HIP architecture introduces a layer which is called Host Identity
Layer between the transport and network layer. A comparison between the current
network architecture and the HIP-based architecture is illustrated in Figure 2.3.

2.2.3 HIP packet structure

HIP header in all HIP packets contains �xed �elds, including both sender's and
receiver's HITs. In the �rst packet, I1, the receiver's HIT may also be zero, if it
is unknown (opportunistic HIP). Figure 2.4 presents an overview of HIP packet
structure.

2.2.4 HIP Base Exchange

HIP base exchange is a four-way handshake to authenticate the end-hosts to each
other, i.e., to verify that possess the private keys corresponding to their host identi-
�ers. In addition, the base exchange includes a computational puzzle to protect hosts
against DoS attacks. As HIP base exchange is designed as an end-to-end authenti-

CHAPTER 2. BACKGROUND 8

Figure 2.5: HIP Base Exchange
[2]

cation and key establishment protocol, it can be used with Encapsulated Security
Payload (ESP) [24]. It is possible to extend HIP to use e.g. S-RTP.

In HIP, the system initiating a HIP base exchange (the client) is the Initiator, and
the contacted host (the server) is the Responder.

The Initiator starts the handshake procedure by sending an I1 packet. The I1 packet
is a "trigger" packet that contains the HIT of the Initiator and (optionally) the HIT
of Responder. When the peer receives the I1 packet, it sends an R1 packet which
contains a cryptographic challenge that the Initiator must solve before continuing the
exchange. In addition, Di�e-Hellman [25] related parameters included. The initiator
solves the puzzle and responds with an I2 packet. The I2 contains a Di�e-Hellman
parameter and SPI number. If the solution for the challenge is not correct, the
responder discards the I2 packet. Finally, the responder �nalizes the base exchange
by sending an R2 packet. All packets in the base exchange are signed with the public
key of the originating host except the I1 packet.

2.2.5 HIP opportunistic mode

Initiator uses opportunistic HIP when it does not know the HIT of the responder.
It sends an I1 packet to the responder by using NULL (all zeros) as the Respon-
der's HIT and waits until it receives a R1 packet from the peer or times out. The
Host Identity Protocol for Linux (HIPL) [9] implementation proceeds with non-HIP

CHAPTER 2. BACKGROUND 9

Figure 2.6: Flow Diagram of HIP Base Exchange in Opportunistic Mode

communications upon the time out.

Figure 2.6 illustrates the process of the opportunistic handshake in HIPL implemen-
tation:

1. The application calls a socket API [31] function that sends data using IP
addresses. The opportunistic library then intercepts the function call.

2. The opportunistic library (opplib in Figure 2.6) queries the HIP daemon for
the corresponding HIT. The query blocks until the HIP daemon responds.

3. The daemon triggers an opportunistic base exchange with the peer.

4. The HIP daemon at the initiator receives the R1 packet.

5. The HIP daemon at the initiator communicates the responder's HIT to the
opportunistic library and proceeds with the base exchange.

6. The opportunistic library proceeds with the translation and connects to the
HIT of the responder.

7. The control �ow proceeds from transport to IPSec layer processing which �nally
transmits the data over ESP.

Finez describes a TCP-based optimization for HIP opportunistic mode [13]. The
initiator sends an I1 packet together with a TCP SYN message with a special TCP

CHAPTER 2. BACKGROUND 10

option. If the responder is a HIP-capable host, it processes the I1 packet and replies
with a R1 packet. After the initiator receives the R1 packet from the responder, the
base exchange continues. On the other hand, if the responder is not HIP-capable,
it cannot understand the I1 packet but can process the TCP packet. The responder
replies to the initiator with a TCP SYN ACK without the TCP option. At this
point, the initiator detects that the peer does not support HIP and falls back to
unprotected TCP connection.

Opportunistic mode is vulnerable to certain types of attacks. An attacker could
guess the time of sending of an I1 and reply with his own R1 packet. Alternatively,
the attacker could just sni� the I1 if it can read the packets or if it is on the path.
Moreover, a man-in-middle attacker could just drop the I1, and force a fall-back to
TCP/IP to inspect the tra�c. In any case, opportunistic mode o�ers "better than
nothing" security using the Leap of Faith model [12].

2.3 NAT Traversal

Network Address Translation is a method to provide transparent routing to hosts.
Address translation allows hosts in a private network to transparently communicate
with destinations on a public network by sharing a single public address and vice
versa [29]. In this section, we attempt to give a brief introduction to the di�erent
NAT traversal techniques.

2.3.1 Types of NATs

Basically, we can divide NATs types into three types:

Cone NATs

Cone NATs stores a mapping between an internal address and port number, and an
external address and port number. Once the NAT translation table entry is in place,
the NAT translate the inbound tra�c to the external address and port number from
any source address and port number.

Restricted NATs

Restricted NAT stores a mapping between an internal address and port number,
and an external address and port number, for either speci�c source addresses or
speci�c source address and port numbers. The NAT discards the inbound packet
that matches the NAT translation table entry for the external destination address
and port number from an unknown external address or port number.

CHAPTER 2. BACKGROUND 11

Symmetric NATs

Symmetric NAT maps the same internal address and port number to di�erent ex-
ternal addresses and ports, depending on the external destination address of the
outbound tra�c. Only an external host that receives a packet from an internal host
can send a packet back.

2.3.2 Teredo

Teredo is a tunneling protocol which grants IPv6 connectivity to nodes that are lo-
cated behind one or multiple IPv4-based NAT devices. It encapsulates IPv6 packets
into IPv4-based UDP tunnels that can be routed through NAT devices and in the
IPv4 internet. However, Teredo is not compatible with all NAT devices. Full cone
and restricted NAT devices are supported, while symmetric NATs are not [10].

The Teredo protocol diagnoses UDP over IPv4 connectivity and discovers the type
of NAT present by using a simpli�ed replacement to the STUN protocol. After that,
it assigns a globally IPv6 address to the host and tunnels IPv6 packets over UDP
for transmission over an IPv4 network. Teredo supports also connectivity between
Teredo-based hosts and native IPv6 hosts.

Teredo communication is facilitated by Teredo servers and Teredo relays. Teredo
servers are used by Teredo clients to autodetect the type of NAT behind which they
are located. A Teredo client sends a UDP packet to its Teredo server at regular
time intervals to maintain a binding on its NAT. This ensures that the server can be
contacted by any of its clients, which is required for hole-punching to work properly.
A Teredo relay is responsible for receiving tra�c from the IPv6 hosts addressed to
any Teredo client, and forwarding it over UDP/IPv4. Symmetrically, it also receives
packets from Teredo clients addressed to native IPv6 hosts over UDP and IPv4 and
detunnels packets to the native IPv6 network.

2.3.3 Interactive Connectivity Establishment

Interactive Connectivity Establishment (ICE) is another technology used to solve
the NAT traversal issues for di�erent Internet applications. In ICE philosophy, a
node does not try to detect the type or presence of NATs. A node just tries with a
brute-force approach to �nd a working address pair with its peer node [26].

In ICE, each node has a variety of candidate TRANSPORT ADDRESSES which is
usually de�ned as a combination of IP address and port for a particular transport
protocol. Those candidate transport addresses include [26]:

• A transport address on an attached network interface

• A translated transport address on the public side of a NAT

• The transport address allocated from a TURN server

CHAPTER 2. BACKGROUND 12

Figure 2.7: Three IPSec Mode

The purpose of ICE is to discover which pairs of addresses will work. In this way, an
ICE implementation systematically tries all possible pairs until it �nds one or more
pair that works.

2.4 HIP and IPSec

2.4.1 Bound End-to-End Tunnel (BEET)

HIP base exchange is used to set up a HIP association between two hosts. The base
exchange provides two-way host authentication and IPSec symmetric key generation.
HIP uses a new IPSec mode called Bound End-to-End Tunnel for data transmission
after the HIP base exchange. The new mode combines the transport mode and tunnel
mode functionality. It uses transport mode format but tunnel mode semantics [21].

The di�erence between the BEET and the other two modes is in the IP header
processing. The BEET mode introduces two di�erent address concepts: "inner"
address and "outer" address. The "inner" address of the packet is a HIT and is visible
to transport and application layer protocols. The outer address is as locator, i.e., a
routable IP address, and de�nes the topological location in a network. Figure 2.7
illustrates the di�erence between packet structures among three modes. In summary:

• In the transport mode, the IP header is kept intact.

• In the tunnel mode, the packet has two headers on the wire.

• In the BEET mode, the packet has a single header similarly as in transport
mode but processing follows tunnel mode semantics.

The BEET mode spares bandwidth and increases MTU by excluding the inner IP
header from the packet.

CHAPTER 2. BACKGROUND 13

Figure 2.8: HIP data packet structure

Figure 2.9: HIP with IPSec
[2]

2.4.2 Internet Protocol Security (IPSec) with HIP

ESP (Encapsulating Security Payload) protects application-layer data tra�c after
the base exchange is implemented. HIP supports BEET (Bound End-to-End Tunnel)
mode. The BEET mode uses HITs as the inner addresses and routable IP addresses
as the outer addresses. Figure 2.8 shows packet structure for BEET.

Figure 2.9 shows how IPSec interacts with HIP. To start communicating using HIP,
two hosts �rst establish a HIP association using a base exchange (step 1). After
the base exchange is successfully completed, both hosts create a pair of IPSec ESP
SAs, one for each direction. HIP uses IPSec to provide data encryption and integrity
protection for network applications.

For outgoing tra�c, applications use HITs as source and destination addresses in-
stead of IP addresses. IPSec layer intercepts the packet, translates the HITs into SPI
numbers and encrypts the packets. IPSec reconstructs a new IP header to replace
the original one. The new IP header contains the outer source and destination ad-
dresses, as de�ned in the SA (step 2). Finally, the packet is sent to the IPSec tunnel
(step 3).

For incoming tra�c, the incoming HIT can be found from the SPI number in the
ESP packet. IPSec veri�es and decrypts the incoming packet based on the SPI in
the ESP packet. The original IP header is discarded and IPSec constructs a new
IP header which uses HITs as the sender and receiver address (step 2). In this
way, client and server applications manages HITs instead of routable addresses, thus
leaving mobility management as a task for the HIP layer.

CHAPTER 2. BACKGROUND 14

2.5 Sockets API

Sockets API is the most important part in all network communication. This section
introduces the sockets API.

In computer networking, a network socket is the endpoint of a communication �ow.
Sockets form the basis for networking APIs in Unix-based operating systems. The
sockets deliver incoming data packets to the recipient application processes or threads
and deliver outgoing data. Each socket is mapped by the operating system to a
communicating application process or thread based on Transport Layer Interface
(TLI). A network socket is bound to a protocol, local socket address, and remote
socket address structure.

A socket address structure contains the IP address and transport layer port number.
IPv4 addresses are encapsulated in sockaddr_in structures with AF_INET family
while IPv6 addresses are stored in sockaddr_in6 structures with the AF_INET6 fam-
ily. Figure 2.10 illustrates the structures.

/* IPv4 socket address structure for 4.4BSD based systems */

struct sockaddr_in {

uint8_t sin_len; /* length of structure (16) */

sa_family_t sin_family;

in_port_t sin_port;

struct in_addr sin_addr;

}

/* IPv6 socket address structure for 4.4BSD based systems */

struct sockaddr_in6 {

uint8_t sin6_len; /* length of this struct */

sa_family_t sin6_family; /* AF_INET6 */

in_port_t sin6_port; /* transport layer port # */

uint32_t sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* IPv6 address */

uint32_t sin6_scope_id; /* set of interfaces for scope */

};

Figure 2.10: The socket address structures used for passing IPv4 and IPv6 addresses
to the sockets functions in 4.4BSD format.

A socket provides a communication point between the application and networking
stack. A socket is categorized according to three di�erent types. Datagram sockets
are known as connectionless sockets which are datagram oriented, connectionless
and unreliable. Stream sockets are used for creating sequenced, reliable, two-way,
connection-based byte streams. In practice, a stream socket refers to Transport
Control Protocol (TCP) and a datagram socket refers to User Datagram Protocol

CHAPTER 2. BACKGROUND 15

(UDP) based communication. The third socket type is a raw socket which receives
also network packet headers, while non-raw sockets strip the header and receive only
the payload. For outgoing packets, the IP header can be usually modi�ed by using
raw sockets.

In this section, we focus on discussion of raw sockets because they are essential in the
HIP Proxy implementation. It should be noted that raw sockets require super-user
privileges.

Socket Creation

A raw socket allows access to the network and transport layer headers. To create a
socket of type SOCK_RAW , we use the socket() function call. It takes three argu-
ments. The �rst argument de�nes the address family such as PF_INET for IPv4 or
PF_INET6 for IPv6. The second argument sets the type of socket. Value SOCK_RAW

refers to a raw socket. The third argument sets the protocol number and it de�nes
the protocol value in the IP header (HIP is 139, for example). Prototype of the
socket function is shown in Figure 2.11.

int socket(int domain, int type, int protocol);

Figure 2.11: The socket function

A raw socket allows the application to specify the whole IP header by using the
IP_HDRINCL socket option. If IP_HDRINCL option is set, the whole IP packet including
payload and IP header can be accessed and modi�ed by the application. Only IPv4
packets can use the IP_HDRINCL option. It is not allowed to modify the source
address �eld in IPv6 header.

Socket Options

Socket options can be queried and set using the function calls shown in Figure 2.12.
The �rst argument is the socket descriptor. The second argument de�nes the socket
handler for which the socket option is targeted. The third argument is the name
of the option such as IP_HDRINCL. The fourth argument is a pointer to the socket
option parameter. The last argument indicates the length of the parameter. In Fig-
ure 2.13, the function call setsockopt() can be used to set the IP_HDRINCL options
associated with a socket. If the application should manipulate packet headers, the
fourth parameter should be set to one.

CHAPTER 2. BACKGROUND 16

int setsockopt(int s, int level, int optname, const void* optval,

socklen_t optlen);

int getsockopt(int s, int level, int optname, void* optval,

socklen_t* optlen);

Figure 2.12: The Socket option function

setsockopt(sockfd, IPPROTO_IP, IP_HDRINCL, &on, sizeof(on));

Figure 2.13: The Socket option function

Socket Binding

Bind() function is illustrated in Figure 2.14. The bind() system call assigns a local
address to a socket. However, a connection-oriented application can call the bind()
function only once for any given socket. The socket descriptor must be deleted when
it is no longer needed.

int bind(int sockfd, struct sockaddr* my_addr, socklen_t addrlen);

Figure 2.14: The bind function

Packet Handling

For outgoing packets, the kernel uses the sendto() function call as shown in Fig-
ure 2.15 to deliver transport layer packets using a raw socket. It should be noted that
the application must calculate the header checksum of the transport layer packet by
itself before sending it when the speci�c transport protocol employs checksums.

For incoming packets, the kernel passes packets to a raw socket only if the proto-
col and destination of the incoming packet matches the local IP address and pro-
tocol of the raw socket. If the raw socket is bound to INADDR_ANY for IPv4 or
IN6ADDR_ANY_INIT for IPv6, the kernel passes a copy of all incoming IP packets
associated with the corresponding protocol to the raw socket.

2.6 IPQ Library

Packets are usually handled inside kernel space in Linux [3]. The kernel is ultimately
responsible for the sending and receiving of packets. However, the implementation of

CHAPTER 2. BACKGROUND 17

size_t sendto(int sockfd, const void* buff, size_t bytes, int flags,

const struct sockaddr* to, socklen_t* addrlen);

Figure 2.15: The sendto function

Figure 2.16: Libipq Process

HIP Proxy requires packet handling inside the user space so that the proxy can run
without the modi�cation to the kernel. This reduces development time and eases
deployment. Iptables userspace packet queuing library (Libipq) redirects tra�c from
the kernel to userland and was used for the development of the proxy.

Libipq is a library for iptables userspace packet queuing. It provides mechanisms
for intercepting packets to userspace. The application can assign verdicts to drop or
accept the intercepted packets [8]. Figure 2.16 illustrates the libipq packet handling
mechanism.

For each supported protocol, a kernel module called the queue handler is used to
perform the mechanics of passing packets to and from userspace. Once the kernel
loads the module, IP packets are selected using iptables and queued for userspace
processing via the QUEUE target. For example, running the following commands
on the command line enables queuing of ICMP packets:

iptables -A OUTPUT -p icmp -j QUEUE

ip6tables -A OUTPUT -p icmp -j QUEUE

Figure 2.17: The iptables function used by Libipq in IPv4 and IPv6

In Figure 2.17, kernel broadcasts all ICMP messages to all listening applications. If
no userspace application is waiting, the packets will be dropped.

Libipq provides an API to communicate with kernel modules. It supports the fol-
lowing operations [8]:

CHAPTER 2. BACKGROUND 18

1. Initialization.
The function ipq_create_handle creates a Netlink socket [28] and returns an
opaque context handle.

2. Setting the Queue mode.
Libipq speci�es the type of userspace packet data by using Function call
ipq_set_mode. The queued packets has two modes: metadata(IPQ_COPY_META)
and payload(IPQ_COPY_PACKET).

3. Receiving packets from the Queue.
When messages arrive, function ipq_read returns the value IPQM_PACKET if
it is a network packet. The type of packet is determinated with function
ipq_message_type. Function iqp_get_apcket is responsible for retrieving
the metadata and optional payload.

4. Issuing verdicts on packets.
Function ipq_set_verdict issues a verdict on a packet before the packet re-
turns to the kernel.

5. Cleaning up.
Function ipq_destroy_handle frees the resources associated with the context
handle.

Chapter 3

Design

In this chapter, we describe the architecture of the HIP proxy.

3.1 HIP Proxy

A HIP-capable host requires that the IP-stack of the end-host supports HIP. From a
deployment perspective, this can be an obstacle and some proprietary legacy stacks
may never be HIP capable. A HIP proxy that translates non-HIP tra�c to HIP-
based tra�c on behalf of a client host can facilitate HIP deployment.

The proxy uses di�erent mechanisms to process the packets originating from the
client vs. from the server, we chose to organize the discussion according to the packet
processing directions at the proxy. At the proxy, the outbound direction refers to
the direction from the client to the server while the inbound direction indicates the
direction from the server to the client.

3.1.1 Databases in HIP Proxy

In our design, a HIP Proxy acts an on-path middlebox (e.g. router or WLAN access
point) between HIP-capable servers and legacy clients. All network tra�c between
them traverses HIP Proxy. We have de�ned a number of data structures to translate
the tra�c for the proxy. We introduce two new data structures: Proxy Database
(proxydb) and Connection Database(conndb), which are shown in Figure 3.1.

19

CHAPTER 3. DESIGN 20

Figure 3.1: HIP Proxy

The proxy handles the outbound packets according to the records from both proxy
and connection database while the proxy determines the inbound packet by con-
sulting connection database only. We discuss the topic in detail in the following
sections.

Proxy Database

Proxy database stores information related to the translated packet �ows. Every
time a packet arrives from a client, the HIP Proxy checks the proxy database to
�nd a database entry by searching the IP address of the server and the client. If
the destination IP address of the packets does not exist in the proxy database, the
HIP Proxy tries a base exchange with the server and updates the proxy database
accordingly. If the peer is identi�ed as a HIP incapable host, the proxy records this in
the proxy database and passes consequent tra�c as it is without HIP transformation.
Otherwise, the proxy records a successful base exchange also to the database and
applies ESP transformation to the tra�c.

Connection Database

As a HIP proxy acts as an on-path middlebox, all network tra�c between the client
and server traverses through it. The proxy maps IP addresses to the HIT of the
server using proxy database. However, this is not enough. Di�erent clients could
connect to the same server. Thus, it is impossible to �nd the connection to clients
from the proxy database just with proxy's and server's IP address. Connection
database contains the address, protocol and port information of the client, server

CHAPTER 3. DESIGN 21

and proxy. For outgoing packets, the proxy identi�es the packet �ow according to
the connection database. The proxy updates the connection database together with
the proxy database when a new packet �ow is established.

3.1.2 Four scenarios for HIP Proxy Design

In this section, we discuss four di�erent usage scenarios and explain how the proxy
works in practice.

A HIP-incapable Client and A HIP-capable Server

HIP proxy packet processing from a HIP-incapable host to a HIP-capable host is
illustrated in Figure 3.2 and described below.

Client

HIP-incapable

HIP Proxy Peer Host

HIP-capable

1.Initialize connection

3.ESP

2.HIP OPP BEX

2.HIP OPP BEX
3.ESP

Figure 3.2: A HIP-incapable Host to A HIP-capable host

1. The client tries to establish a TCP or UDP connection to the server.

2. The Proxy captures the �rst network packet from the client and drops it,
thus relying on client retransmissions. The proxy adds the connection to its
database and initializes a HIP BEX with the server.

3. After the HIP BEX is completed, the proxy updates its connection database.
The proxy starts to translate data packet �ows.

A HIP-capable Host and A HIP-incapable host

Proxy packet processing from a HIP-capable host to a HIP-incapable host is illus-
trated in Figure 3.3 and described below.

Client

HIP-capable

HIP Proxy Server

HIP-incapable
1.Initialize connection in
TCP opportunistic mode 2.Forward packets

3.TCP/IP packets 4.TCP/IP packets

5.TCP/IP packets6.HIP BEX

Figure 3.3: A HIP-capable Host to A HIP-incapable host

1. The client tries to establish a HIP BEX to the server in TCP opportunistic
mode.

CHAPTER 3. DESIGN 22

2. The proxy forwards the I1 packet coming from the client host.

3. As the peer host is not HIP capable, the client and proxy will never receive
an R1 packet. The client times out and continues transfer without HIP as
described in more detail in the thesis of Finez[15].

4. The proxy forwards the TCP/IP packets as they are without translation.

5. The TCP SYN reply from the server triggers the HIP BEX between the proxy
and the client.

6. After HIP BEX, the proxy sets up a secure tunnel to the server. All data
from/to the client host goes through it.

A HIP-capable Host and A HIP-capable host

The HIP Proxy packet processing from a HIP-capable Host to a HIP-capable host
is illustrated in Figure 3.4 and described below.

Client

HIP-capable

HIP Proxy Server

HIP-capable

1.HIP BEX I1

4.Forward HIP BEX I1

2.Forward HIP BEX R1

3.HIP BEX R1

Figure 3.4: A HIP-capable Host to A HIP-capable host

1. The client tries to establish a HIP BEX to the server.

2. The HIP Proxy forwards the I1 packet originating from the client.

3. The proxy receives the R1 response from the server.

4. The proxy forwards the R1 packet to the client. Then, rest of the BEX is
completed. The data transfer starts in IPSec mode and the proxy forwards the
IPSec tra�c.

A HIP-incapable Host and A HIP-incapable host

Proxy packet processing from a HIP-incapable Host to a HIP-incapable host is illus-
trated in Figure 3.5 and described below.

Client

HIP-incapable

HIP Proxy Server

HIP-incapable

1.Initialize connection

2.Initialize BEX in
opportunistic mode

3.does not support HIP

Figure 3.5: A HIP-incapable Host to A HIP-incapable host

CHAPTER 3. DESIGN 23

Figure 3.6: HIP Firewall State Machine

1. The client tries to establish a normal TCP or UDP connection to the server.

2. The proxy drops the �rst network packet coming from the client host and
initializes a HIP BEX with the server in opportunistic mode.

3. As the server is not HIP capable, the client and proxy will never complete the
HIP BEX. After a time-out, the proxy marks the server as a HIP-incapable
host.

4. The client host re-transmits the �rst packet and the proxy forwards all the
network tra�c from the client host as it is without modi�cations.

3.2 Architecture

3.2.1 HIP Firewall State Machine

The HIP �rewall (hipfw) handles input and output packets processing for HIP Proxy
in the HIPL implementation. Capturing the necessary network packets and applying
further processing to the packets are essential functionalities for the HIP �rewall. It
should be noted that hipfw also handles HI-based access control in HIPL.

Figure 3.6 illustrates the mechanism of HIP Proxy state machine that is implemented
within hipfw, which is referred here as HIP �rewall state machine (FW_SM). The state
machine summarizes HIP Proxy packets processing sequences for the incoming and
outgoing packets.

For most outbound cases, a legacy client sends the �rst packet to a server which is
routed through the proxy in the beginning. To activate proxy processing, the packet

CHAPTER 3. DESIGN 24

should be a regular TCP or UDP packet. When the �rewall is operating in the
HIP proxy mode, it intercepts all packets (not just HIP and ESP packets, with or
without UDP encapsulation). As soon as the �rewall captures a plain TCP / UDP
packet, it consults its proxy database and notices that there is no state because it
is a completely new connection. The �rewall adds a new database entry for the
{src_ip, dst_ip} pair and drops the packet. It should be noted that the packet
could also be cached for better e�ciency, but we have assumed on transport layer
retransmissions in this �rst version of the prototype.

Then, the �rewall requests the hipd to start an opportunistic base exchange with
the Responder. The hipd consults also hosts �les, DNS and DHT to make a normal
base exchange when applicable. The �rewall requests the hipd to automatically add
a new database entry for an opportunistic HIP base exchange and to trigger sending
of I1.

When the server does not support HIP (i.e. server does not reply with a R1),
the opportunistic mode in hipd timeouts and the hipd sends a message to the
�rewall without the HIT of the peer. When the �rewall receives such a mes-
sage, it sets the state of corresponding proxy state to "HIP_PROXY_PASSTHROUGH".
Such a state means that the �rewall should not block connections between such
{initiator_ip, responder_ip} pair because the peer is not HIP capable. The
�rewall assigns verdict "accept" to such a packet/�ow. This is illustrated in the
state machine in Figure 3.6 in a box that says 'peer supports HIP?".

For inbound tra�c, packet processing starts from the �rewall intercepting a HIT-
based data packet. The �rewall consults its proxy and connection database and
�nds out that there is an entry in TRANSLATE state. The proxy drops the original
packet and translates HITs to IP addresses. When conversion occurs from HIT to
IPv4, the proxy builds the whole header from scratch. Finally, the �rewall injects
the transformed packet back to the network stack and the stack delivers the packet
back to the legacy client.

3.2.2 Outbound Processing Model

The outbound processing model describes the interaction between the legacy client
and the proxy. The outbound packet processing is illustrated in Figure 3.7 and
described below.

1. The HIP Proxy is switched on with hipconf hipproxy on command.

2. The user runs a client application and the application queries the resolver in
order to translate the hostname.

3. The resolver queries the DNS for the given hostname.

4. The resolver returns the IP address assigned to this hostname.

5. The application begins a transport connection by calling e.g. connect().

CHAPTER 3. DESIGN 25

Figure 3.7: HIP Proxy Outbound Scenario

6. The network stack on the client host transmits the TCP or UDP packet to the
proxy.

7. The iptables rule in �rewall captures the packet and delivers a copy to the
FW_SM module.

8. The �rewall consults its proxy database and notices that there is no entry
because it is a completely new connection. The �rewall adds a new database
entry and drops the packet.

9. The FW_SM request hipd to send an I1 packet in opportunistic mode.

10. The hipd adds a new database entry for an opportunistic HIP base exchange.

11. The hipd sends an I1 packet to the peer.

12. The hipd receives an R1 from the peer.

13. The hipd sends a "HIP BEX successful" response to the �rewall

14. The �rewall updates the packet �ow state in the database accordingly.

15. The �rewall rewrites the packet header with HITs and re-injects it back into
the network stack.

16. The IPSec module translates HITs to routable IP addresses together with the
SPI number, handles ESP encapsulation and transmits the packet on the wire.

CHAPTER 3. DESIGN 26

Figure 3.8: HIP Proxy Inbound Scenario

3.2.3 Inbound Processing Model

The inbound packet processing is illustrated in Figure 3.8 and described below.

1. The proxy receives an ESP packet from the server.

2. The IPSec module decrypts the packet and converts the IP header to an IPv6
header containing the HITs. After this, the proxy re-injects it back to the
network stack.

3. The iptables rule captures the packet and delivers it to FW_SM.

4. The �rewall searches its proxy and connection database and discovers that the
client IP address from a database entry to be in TRANSLATE state.

5. The �rewall rewrites the packet header with plain IP addresses.

6. The �rewall re-injects the packet into the network stack.

7. The network stack transmits the packet on wire.

8. The packet arrives to the stack and the stack delivers the packet to the trans-
port and application layer.

3.3 HIP proxy and hipconf extension

The hipconf extension for the proxy used as follows:

tools/hipconf hipproxy <on|off>

Figure 3.9: The hipconf command for switching proxy on/o�

CHAPTER 3. DESIGN 27

The proxy usage instruction are stored in hipd. The hipfw queries this information
from hipd when it is started. As the communication between hipfw and hipd is
message based, hipfw sends an internal message to hipd. Then hipd replies and
indicates whether the proxy is in use or not.

Chapter 4

Implementation

HIPL consist �ve di�erent components: HIP daemon (hipd), HIP con�guration tool
(hipconf), HIP socket handler, BEET for IPSec and HIP �rewall (hipfw). We mod-
i�es the hipd, hipconf and hipfw components for the HIP Proxy implementation.
In this chapter, we focus on the implementation of those three modi�ed components
in HIPL. We present the overall implementation architecture and the interaction
between the di�erent software components using sequence diagrams.

4.1 HIP Proxy

To use the proxy e�ciently, the proxy is designed in a way that proxy clients can
communicate with the proxy server simultaneously. An ESP tunnel between a proxy
and a server may be shared between multiple clients. The proxy masquerades the
clients in such way that all client connections appear to originate from the same IP
address of the proxy, which is illustrated in Figure 4.1. In this section, we describe
the changes to the existing implementation architecture and describe how they are
used for the proxy functionality.

28

CHAPTER 4. IMPLEMENTATION 29

Figure 4.1: HIP Proxy

4.1.1 Data Structure in HIP Proxy

We introduce a new data structure for an internal database of the proxy in HIP
Proxy. As shown in Figure 4.2, hip_conn_key is based on the IP address and port
number of the client and the server.

struct hip_conn_key {

uint8_t protocol;

uint16_t port_client;

uint16_t port_peer;

struct in6_addr hit_peer;

struct in6_addr hit_proxy;

} __attribute__ ((packed));

Figure 4.2: HIP Connection Key structure

This structure collects the all necessary information for each connection in the Proxy
Connection Database which will be discussed in detail in the following sections. We
use this information to identify the di�erent connections from each other in the
outbound processing.

4.1.2 Databases in HIP Proxy

HIP Proxy introduces two databases that store connection information for outbound
and inbound connections. Both databases also record relationship between clients
and servers.

HIP proxy uses the database to store connection information for outbound and
inbound connections. Each entry in the proxy database contains the mapping from

CHAPTER 4. IMPLEMENTATION 30

the client IP address to the HIT of the server. If multiple clients shares the same
tunnel to the server, their packets to the server look same. The proxy cannot �nd
the client information according to the information of inbound packets. Thus, a
"connection database" is introduced. It records the IP address of the client and the
server, as well as the port numbers, so that the proxy can use this information to
identify the inbound packet �ows.

Proxy Database

The HIP Proxy Database (proxydb) contains outbound connection related informa-
tion as shown in Figure 4.3. The proxydb contains the IP addresses and HITs of
the proxy itself, the server and also the client IP address. Variable hip_capable

indicates if the current connection uses HIP between the client and the server. The
variable state de�nes the packet processing state. It has three di�erent states:
HIP_PROXY_I1_SENT, HIP_PROXY_PASSTHROUGH, and HIP_PROXY_TRANSLATE. When
the proxy triggers a HIP base exchange, the state transitions to HIP_PROXY_I1_SENT.
Once the proxy establishes a HIP association with the server, the proxy transitions
the association state to HIP_PROXY_TRANSLATE. If the proxy discovered the server to
be HIP-incapable, the proxy transitions the state to HIP_PROXY_PASSTHROUGH and
the proxy passes the tra�c without any modi�cations. The proxy discovers this
through a timeout in the opportunistic HIP based exchange[15].

typedef struct hip_proxy_t {

hip_hit_t hit_proxy;

hip_hit_t hit_peer;

struct in6_addr addr_client; // addr_proxy_client

struct in6_addr addr_peer; // addr_proxy_server

struct in6_addr addr_proxy; // addr_proxy

int state;

int hip_capable;

} hip_proxy_t;

Figure 4.3: HIP Proxy outbound connection Database

Connection Database

In addition to HIP Proxy Database, the proxy includes a second database called
HIP Connection Database (conndb). Its objective is to record the connection related
information associated with inbound connections.

CHAPTER 4. IMPLEMENTATION 31

typedef struct hip_conn_t {

struct hip_conn_key key;

int state;

struct in6_addr addr_client; // addr_proxy_client

struct in6_addr addr_peer; // addr_proxy_peer

} hip_conn_t;

Figure 4.4: HIP Proxy inbound connection Database

4.2 HIP Firewall State Machine

As described in the previous section, the HIP �rewall state machine ties together
the components of the HIP Proxy. The hipfw initializes the necessary components
and inserts rules for network tra�c capture. The HIP �rewall state machine uses
LIB_IPQ interface of net�lter to receive the intercepted packets. After analyzing and
processing, hipfw delivers the verdict for each packet.

4.2.1 Packet Processing

To enable the HIP Proxy functionality, hipfw captures the network datagrams with
the di�erent �rewall rules for inbound packets and outbound packets. For outbound
connections, hipfw captures all the forwarded packets. By default, it allows all HIP
packets to traverse to the server because the proxy will be transparent for HIP-
capable hosts. This can be restricted using the ACL functionality in the hipfw.
The proxy acts on outbound tra�c only when a client sends non-HIP tra�c. The
iptables rules for capturing outbound tra�c are as follows:

iptables -I HIPFW-FORWARD -p tcp -j QUEUE

iptables -I HIPFW-FORWARD -p udp -j QUEUE

For inbound connections, i.e., tra�c from a server to the proxy, the proxy captures
tra�c from the ESP tunnel. The proxy is the destination of the actual ESP tunnel.
The following �rewall rules capture inbound tra�c:

ip6tables -I HIPFW-INPUT -p tcp -d 2001:0010::/28 -j QUEUE

ip6tables -I HIPFW-INPUT -p udp -d 2001:0010::/28 -j QUEUE

Basically, the proxy should support all transport protocols above the IP layer. How-
ever, the proxy implementation is based on Linux operating system. And it does

CHAPTER 4. IMPLEMENTATION 32

not allow the modi�cation of the source address from a userspace process for IPv6.
Thus, the proxy only translates IPv4 tra�c from clients.

4.2.2 Interaction between the Components

Interaction between proxy components is illustrated using sequence diagrams in this
section. The sequence diagrams show the control �ow through di�erent function
calls. We do not show the full execution trace of functions but instead focus on the
most relevant functions.

HIP Firewall State Machine (HFSM) is a conceptual state machine model for the
proxy. It implements processing logic of the proxy. Figure 4.5 shows how the HFSM
handles outbound connections. Initially, the outbound packets are sent to HFSM
according to the �rewall rules using function call hip_fw_handle_other_forward().
HFSM calls function request_hipproxy_status() to check the status of the proxy
from hipd. If the proxy is turned on, the packets are delivered to the outbound
component for the further processing. In the end of the �ow, the processed packets
are sent to the HFSM which is responsible for re-injecting packets back to the network
stacks for network delivery.

Figure 4.5: HFSM with an outbound connection

The proxy handles inbound connections similarly to outbound connections. An
inbound interaction scenario is depicted in Figure 4.6 .

Figure 4.6: HFSM with an inbound connection

CHAPTER 4. IMPLEMENTATION 33

4.3 Outbound Processing

This section summarizes the overall functionality of the system. It also describes
interactions within the outbound component which is illustrated in Figure 4.7. The
outbound component handles connections originating from the clients. When a
packet from a client traverses through the network stack to the server, the HFSM cap-
tures it and sends it to outbound components using function call hip_fw_handle_-
other_forward() (in step 1).

Figure 4.7: Outbound Model sequence diagram

4.3.1 Connection Establishment

The proxy checks the state of the connection in proxydb (in step 2). If the proxy
does not �nd the state information in database, it adds a new entry into proxydb

to cache the connection information (in step 3). It also issues a call to hip_proxy_-

request_peer_hit_from_hipd() to request hipd for the server's HIT (in step 4).
If the proxy has not established a prior HIP connection with the server, the proxy
triggers a base exchange (in step 4). The proxy transitions the state in database
entry to HIP_PROXY_I1_SENT and discards all the packets to the server until hipd
sends a con�rmation. If the server is HIP-capable, the proxy receives a noti�cation of
successful base exchange and updates the state to HIP_PROXY_TRANSLATE. Otherwise,
the connection in the proxydb is marked as HIP_PROXY_PASSTHROUGH. If the same
connection is found in proxydb(in step 5), the proxy modi�es the packet header and
sends it into ESP tunnel (in step 6). If not, the proxy adds a database entry to
conndb (in step 7). Finally, the clients can proceed with communication with HIP
capable servers through the proxy (in step 8).

CHAPTER 4. IMPLEMENTATION 34

Figure 4.8: Inbound Model sequence diagram

4.3.2 Packet Processing

Once state is successfully established, the proxy modi�es the header of an outbound
IP packet and re-inject it back to the network stack. The re-injection process con-
sists of replacing the IPv4 header with an IPv6 header where the source and destina-
tion address correspond to the proxy's HIT and the server's HIT. The function call
hip_proxy_send_pkt() delivers the IPv6 packet using a raw socket, which injects
the packet into the ESP tunnel.

4.4 Inbound Processing

The inbound direction refers to packets originating from the server. All connections
are initialized by clients and, therefore, the inbound processing occurs after the proxy
has established state with the server. Figure 4.8 illustrates the sequence of the most
relevant function calls for the inbound processing.

4.4.1 Packet Processing

The destination of all inbound packets is the proxy. The proxy identi�es the con-
nections by checking the conndb (in step 2). If the proxy �nds the record in the
database, it replaces the IPv6 header with HIT with new IPv4 header and re-injects
the packet back to the networking stack with the new destination set to the client's
IP address contained in the conndb (in step 3). The proxy �lls the source and des-
tination �elds by the server's IP address and the client's IP address and sends the
translated packet using the function call hip_proxy_send_client_pkt() (in step
3). If proxy does not �nd the state in conndb, the proxy forwards the packet (in
step 4).

CHAPTER 4. IMPLEMENTATION 35

4.5 Protocol Translation

The HIP proxy handles the tra�c �ow translation between IPv4 based legacy clients
and HIP capable servers. A HIP-capable server uses IPv6-networking (i.e. HITs) as
the application layer identi�er. Thus, the proxy provides a basic address translation
mechanism between IPv4 and IPv6.

The implementation uses a raw socket to inject packets because it can manipulate
the packet header, as opposed to standard sockets which can alter just the packet
payload but no headers. In outbound processing, the proxy builds the new IPv6
packet in which the source address belongs to the proxy and the destination address
belongs to the server. It also copies the payload into the newly constructed IP packet
and recalculate the checksum for the transport layer header. In inbound processing,
the proxy translates IPv6 into IPv4 by using the same, but reverse, mechanism used
in the outbound processing.

Chapter 5

Analysis

This chapter �rst presents the test environment of the HIP proxy performance eval-
uation. Secondly, we show the performance measurement results organized in charts
and tables. The analysis also includes related problems we discovered during the
testing and analysis phases.

5.1 Testing Environment for Performance Evaluation

In this section, we introduce the testing environment of the performance evaluation
for the HIP proxy. Furthermore, we present the test platform and the software used
for the experimentation.

5.1.1 Test Platforms

Hardware Environment

We performed the measurements on three hosts: a client, a client-side proxy and a
server. The proxy acts as the initiator and the server as the responder. We built
the test bed using virtualization on one laptop pc. The client host and the server
host are based on VMware player v2.5.2. Proxy was being run in the underlying
PC without virtualization. Table 5.1 below describes the hardware and operating
system characteristics of the hosts used in the tests. It should be noted that the
hardware did not have any native support to accelerate virtualization.

36

CHAPTER 5. ANALYSIS 37

Client Proxy Server

Ubuntu Jaunty 8.04 Ubuntu Jaunty 9.04 Ubuntu Jaunty 8.04
Kernel 2.6.24-1 Kernel 2.6.30-1 Kernel 2.6.24-1

with BEET Patch with BEET Patch with BEET Patch

256M Memory 2G Memory 256M Memory

VMware Intel(R) Core(TM) 2 CPU VMware

1000M Ethernet 1000M Ethernet 1000M Ethernet

Table 5.1: Test Con�guration

Network Con�guration

We connected all the hosts using a virtual 100Mbit Ethernet link and all connections
are based on IPv4. The MTU default value used in the performance evaluation is
1280 bytes. The network topology is shown in Figure 5.1.

Figure 5.1: Network Con�guration for Performance Evaluation

The proxy is equipped with two network interface cards which bridge the connec-
tions between two di�erent network domains. The legacy client is located in the
192.168.74.00/24 in which connections are based on plain TCP/IP protocol. The
HIP-capable server is located in 10.0.0.0/24 network only. The connectivity between
the proxy and server are based on HIP.

5.1.2 Test Software and Con�guration

We used bzr revision trunk/1855 of HIPL software on the client, the server and the
proxy for performance testing. The test software is Iperf version 2.0.2. Iperf shows
the bandwidth and throughput by streaming for 20 seconds. For UDP connection,
the bandwidth for testing was set as 1000Mbits.

5.1.3 Test Procedure

We use the following test procedure for our test. The proxy acts as the Initiator
and the server host as the Responder, where we repeat the test 20 times. The tests
measure the throughput of TCP on top of the ESP tunnel. We also compare the
performance to ESP-based end-to-end data tra�c without the HIP proxy. It should
be note that base exchange delay was included in the measurements.

CHAPTER 5. ANALYSIS 38

5.2 Results and Analysis of Performance Measurements

In this section, we illustrate the results obtained using the test con�guration which
we described in the previous section. This section focuses on analysis of the TCP
throughput with and without the proxy.

5.2.1 TCP Throughput

We tested data tra�c both with end-to-end HIP connections and end-to-middle
using the HIP proxy. Figure 5.2 shows the TCP throughput as well as the standard
deviation.

Figure 5.2: Comparison of Throughput for TCP connections using HIP

The chart shows that the average throughput for a TCP connection via the HIP
proxy is 1.09Mbit/s with a standard deviation value of 0.19Mbits/s. A HIP end-
to-end connection has an average value of 2.63Mbits/s with a standard deviation of
0.32Mbits/s. As the measurement shows, the proxy prototype decreases throughput.
There are several reasons for the lowered performance. First, the implementation is
running on virtual machines without hardware support for virtualization, i.e. hosts
share the same physical resources. Second and more importantly, the implementation
is an unoptimized prototype and it has not been pro�led for performance bottle-
necks. Third, the proxy prototype is implemented on top of hipfw. The single
threaded implementation of hipfw has to process both input and output data �ows,
and we suspect it could therefore be the main performance bottleneck.

CHAPTER 5. ANALYSIS 39

5.3 Issues for ICMP

The Internet Control Message Protocol (ICMP) is not supported by the current HIP
proxy implementation. As one of the core protocols of the TCP/IP suite, it is mainly
used to send error messages indicating, for instance, that a requested service is not
available or that a host or router could not be reached. As shown in Figure 5.3, the
ICMP packet consists of a header and the protocol payload. The header contains
only three �elds: type, code, and checksum. Type speci�es the type of the message.
The value of the code �eld depends on the message type and provides an additional
level of message granularity. The checksum �eld provides a minimal level of integrity
veri�cation for the ICMP message.

Figure 5.3: The header of ICMP and ICMPv6

We studied also ICMP in our test environment. The current proxy implementation is
not yet compatible with the ICMP protocol. The reason is that communication of the
legacy client are assumed to be based on IPv4 and the server is based on IPv6. ICMP
protocol is recognized as ICMPv4 in IPv4 and ICMPv6 in IPv6. They are di�erent
protocols that have di�erent de�nitions for their �elds. Thus, the proxy cannot
handle ICMP packets correctly by using the same protocol translation mechanism
used for TCP/IP.

One solution for the ICMP issue is to implement a mapping table between ICMPv4
and ICMPv6 inside the proxy. The table contains the �eld translation de�nitions
for both ICMPv4 and ICMPv6. The proxy uses the table to translate ICMPv4 to
ICMPv6 according and vice versa. We did not have time to implement this solution
during this thesis.

An alternative solution is to perform IPv4 to LSI translation at the proxy. By
using LSI support, the ICMP packets could traverse the proxy without any problem.
However, we did not have time to experiment with this solution in this thesis.

5.4 An Issue with FTP

Some application layer protocols include explicit network addresses within their ap-
plication payload, which creates some problems in NATed environment as well as
with the HIP Proxy. Some examples of those applications and protocols are File

CHAPTER 5. ANALYSIS 40

Transfer Protocol (FTP), Session Initiation Protocol (SIP) and Simple Network
Management Protocol (SNMP). In this section, we focus on the FTP case.

File Transfer Protocol (FTP) is a network protocol used to exchange �les over a
TCP/IP-based network. FTP is built based on the client-server paradigm and uses
two separate TCP connections for communications, one for control and another for
data. By default, the FTP server employs TCP port 21 as the control channel which
transfers FTP requests and replies during the FTP session. Port 20 is usually used
for data, i.e., to transfer actual �les.

FTP can run under "active" or "passive" mode, which controls how the data con-
nection is established. The client sends the server the IP address and port number
that the client should use for the data connection. In active mode, the server opens
the connection according to the information from the client. In passive mode, the
client asks the server for the IP address and port number where it can connect by
sending a PASV command. So, in this mode, the client opens the connection to the
server. If the server uses an IPv6 address, the command must be EPSV.

The FTP protocol encapsulates an address and port number into application payload
in both modes, which leads to a problem with the HIP proxy. To illustrate the
problem, we demonstrate using a practical example with the HIP proxy. The FTP
server uses Pure-FTPd version 1.0.21-11 and the client uses lftp version 3.5.11. Below
is a log in which the client tries to list the directory at the server using FTP.

CHAPTER 5. ANALYSIS 41

whu@virtual1:~$ ftp 10.0.0.129

Connected to 10.0.0.129.

220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------

220-You are user number 1 of 50 allowed.

220-Local time is now 01:22. Server port: 21.

220 You will be disconnected after 15 minutes of inactivity.

Name: (10.0.0.129:whu):

331 User whu OK. Password required.

Password:

230-User whu has group access to ftpgroup whu fuse admin scanner

230- plugdev dip audio tape floppy cdrom fax dialout

230- adm

230 OK. Current directory is /home/whu

Remote system is UNIX.

Using binary mode to transfer files.

ftp> ls

500 I won't open a connection to 192.168.74.129 (only to 2001:1a:9b4

:cc61:f92f:57b4:d289:fd3e)

ftp: bind Address already in use.

ftp> passive

425 You cannot use PASV on IPv6 connections. Use EPSV instead.

Passive mode refused.

When the client executes ls command, the server refuses the connection. The server
informs that it cannot establish the connection to the client (192.168.74.129) but
only to the address 2001:1a:9b4:cc61:f92f:57b4:d289:fd3e. This occurs because
of the protocol translation mechanism at the HIP Proxy. The client establishes an
IPv4 connection to the proxy and the proxy transparently translates the tunneled
connection with inner addresses of the tunnel based on HITs.

In FTP active mode, the client speci�es the IP address and port number to which the
server should connect back by encapsulating this information into the FTP payload.
As the connection between the server and the proxy is based on HIP, the server
cannot recognize the IPv4 address as the client address.

In FTP passive mode, the client sends PASV command to ask the server for the IP
address and port number. With IPv6, the client must use ESPV command. In the
example, the client uses the passive command. In this case, the passive mode does
not work because the server expects the ESPV command since it runs on top of IPv6.
Thus, the client receives the error "425".

The analysis above shows that the proxy may not be suitable for all application-
layer protocols which encapsulate addresses inside their payload. The reason is that
the proxy handles both IPv4 and IPv6 connections. The translation between IPv4
and IPv6 only occurs at the internet and transport layer, which means only the IP

CHAPTER 5. ANALYSIS 42

header is translated and not the application payload. A possible solution is that the
proxy could check the protocols and rewrite the protocol contents. An LSI-based
translation at the application layer is not suitable because of their local scope.

5.5 Compatibility Assurance with Other HIP Extensions

The HIP proxy implementation should remain compatible with other extensions
included in the HIPL implementation. In this section, we try to analyze compatibility
with some of the extensions.

5.5.1 HIP Firewall

The HIP proxy design is based on packet capture at lower layers. The hipfw daemon
captures packets using the prede�ned rules for iptables. The proxy uses a forward
rule for outbound packets and an input rule for inbound packets. To test the HIP
proxy compatibility with �rewall access control functionality in hipfw, the following
rule is inserted into etc/hip/firewall_conf.

INPUT -src_hit 2001:001b:444b:6062:4f84:1c0f:148d:e1d6 DROP

After setting the rules in firewall_conf, data tra�c between the client and the
server was successfully blocked. And the tra�c continues when we change the rule
to the following.

INPUT -src_hit 2001:001b:444b:6062:4f84:1c0f:148d:e1d6 ACCEPT

This means there is no con�ict between iptables access control rules for the proxy
and the hipfw. The hipfw access control functionality worked as expected when the
proxy was enabled.

5.5.2 NAT Traversal

Network Address Translation (NAT) devices are common deployed to alleviate the
exhaustion of IPv4 address space with the use of IP address spaces. The internal
network interface of the NAT device communicates with the external network by
translating the source address of outgoing requests with that of the NAT device
and by relaying the replies back to the originating device. This causes connectivity
problems when a host inside the private address realm as a server or otherwise accepts
incoming connections. In this section, we will discuss di�erent techniques of NAT
traversal for HIP and their relationship with the HIP proxy.

CHAPTER 5. ANALYSIS 43

Client-side NAT traversal

HIPL supports connections initiated behind a NAT. The idea is to use UDP tunneling
in which the initiator encapsulates HIP control packets and ESP data packets in
UDP. In this way, both the initiator and responder have to support NAT extensions
in order to traverse a NAT. We tested client-side NAT traversal by using the following
command to con�gure the hipd at the initiator (i.e. the proxy):

hipconf nat plain-udp

As a result, the proxy was able to translate the tra�c and was compatible with the
client-side NAT traversal. The tra�c between the proxy and the server was tunneled
on top of UDP and the proxy just translated packets into the ESP tunnel and back.
The outern-most UDP tunnel was transparent for the proxy and visible only to the
IPSec.

Teredo

Teredo is a NAT traversal solution for HIP. It has been designed to provide IPv6-
based access to end-hosts located in IPv4-based private address realms. Teredo
protocol detects the type of NAT and can communicate with native IPv6 and Teredo-
based hosts. When a Teredo host contacts another host using native IPv6, the
contacting host encapsulates IPv6 packets over UDP and IPv4 through a Teredo
relay which then decapsulates the IPv6 packets and relays them on the IPv6 Internet.
Teredo protocol requires IPv6 support at both client and server side. Thus, the HIP
Proxy implementation is not yet compatible with the Teredo protocol because it
currently supports only IPv4 tra�c originating from the client side. At the moment,
this scenario remains unsupported by the implementation due to time limits for this
thesis.

Interactive Connectivity Establishment

HIP has an alternative NAT traversal solution which is called Interactive Connectiv-
ity Establishment (ICE) [11]. ICE allows two end-hosts located in di�erent private
address realms to communicate over HIP with each other. With ICE technique, both
client and server can be located behind di�erent NAT boxes and obtain connectivity
using HIP and ICE. The ICE-based HIP solution does not require changes in the
application software and works also with IPv4-based applications. To use the ICE,
a HIP/ESP Relay Server is needed that relays HIP control and possibly also ESP
data tra�c. A HIP Responder uses the HIP Registration Extension to register their
HIT->IP address mappings to the relay. After that, a HIP initiator can initiate a
base exchange using the IP address of the relay instead of the IP address of the re-

CHAPTER 5. ANALYSIS 44

sponder they attempt to connect. Thus, the responder are reachable with the relay's
IP address.

In this master thesis, we did not test the compatibility with ICE solutions because the
ICE implementation was not �nished during the thesis work. However ICE provides
an end-to-end NAT traversal solution between two HIP-capable hosts, which can be
the proxy (the initiator) and the server (the responder). Thus, we believe the ICE
solution should be compatible with the HIP proxy.

5.5.3 HIP Opportunistic Mode Extensions for TCP

HIP opportunistic mode extensions for TCP are usually used between two HIP-
capable hosts. In HIPL, both the proxy and the server are HIP-capable hosts. The
main concern is the con�ict of the iptables rules with the HIP opportunistic mode
extensions for TCP. In proxy implementation, the proxy only has the FORWARD rule
for IPv4 tra�c and the INPUT rule for IPv6 tra�c. The rules do not a�ect that the
TCP SYN packet processing and the HIP opportunistic mode extensions for TCP
are compatible with the HIP proxy.

5.5.4 HIP Userspace IPSec

Userspace IPSec extension is an alternative design for kernel space IPSec. The
userspace implementation does not require any changes to the kernel for Linux OS
below 2.6.27 version. In HIPL implementation, userspace IPSec relies on receiving
HIT-based and non-HIT packets. Figure 5.4 shows the packet processing in outbound
scenario.

Figure 5.4: The outbound processing with Proxy and userspace IPSec extensions

The proxy captures the outbound packet in step (a) while the userspace IPSec im-
plementation captures packets in step (b). Both of them modify and re-inject the
packets back into the network stack in the end of the processing. The main dif-
ference is that the proxy only modi�es the packet headers while userspace IPSec
module encrypts the packets and transfers them using the BEET mode.

CHAPTER 5. ANALYSIS 45

Figure 5.5: The inbound packets processing including Proxy and userspace IPSec
extensions

Figure 5.5 shows the packets processing in inbound scenario. The situation is a little
bit trickier here. Both the proxy and userspace IPSec are con�gured with the INPUT
iptables rules. In step (a), the userspace IPSec module captures the ESP packets
which are encrypted by the server. The proxy module captures the packets which
have the HIT as their destination address in step (b). Thus, there is no iptables
rule con�ict between these two modules. In practice, the �rewall uses the userspace
IPSec module to decrypt the inbound packet and replaces the HITs into the IPv6
header when the ESP packets arrives. After that, the userspace re-injects packets
back to the network stack and then they are captured by the hipfw again for further
proxy processing.

5.6 Comparison to Ericsson Implementation

Another HIP proxy implementation was done in Ericsson [27]. The implementa-
tion is based on 3G networks, which serves legacy UEs, providing them with the
advantages of HIP for the part of the connection that goes over the Internet. The
implementation architecture is similar with the implementation discussed in this
thesis. Both implementations are client side proxies and use the �rewall to capture
packets. The di�erence is that the Ericsson implementation is supporting IPv6 on
the client side which is not supported in the HIPL implementation; and the Eric-
sson implementation is developed for FreeBSD while the HIPL implementation is
developed for Linux. One fundamental di�erence also is that our proxy operates in
opportunistic mode, i.e., does not depend on HIP-based DNS infrastructure.

Chapter 6

Future Work

The design and implementation e�orts with the HIP Proxy have brought up a number
of future research and development ideas that are described in this chapter.

6.1 Client side HIP Proxy

This section describes client-side issues with the HIP proxy that need future work.

6.1.1 ICMP Protocols Support

The protocol support in our HIP proxy implementation is quite limited. The ICMPv4
protocol is not supported in the current implementation as mentioned in Chapter 5.
The proxy implementation does not yet implement the ICMPv4 support.

6.1.2 Referrals

Some applications use IP addresses as referrals, which means that they pass ad-
dresses from one host to another within application-layer protocol. For example,
File Transfer Protocol (FTP) applications use referrals so that the FTP connection
could not pass through the HIP Proxy on our experiments. A possible solution is
that the proxy analyzes the application-layer protocol and translates it. This still
requires further work.

6.2 Server side HIP Proxy

Our HIP proxy implementation is designed to act as a client side proxy which only
supports the communication initialized by a legacy HIP-incapable client. It limits
the usage of the HIP proxy to some cases. In this section, we illustrate an alternative
design for a server side HIP proxy.

46

CHAPTER 6. FUTURE WORK 47

6.2.1 Architecture and Design

The server side proxy is an alternative approach to support communication between
HIP-capable clients and legacy servers. Opportunistic mode should not be used for
the server-side HIP proxy because the proxy may be serving multiple legacy servers
and may not be able to determine the ultimate destination server. Unlike the client-
side HIP proxy, the server side HIP proxy requires HIP DNS support [20] to resolve
the server host names into HITs. As the server side proxy has multiple HITs, it
cannot �gure out which HIT the client is requesting. Thus, Figure 6.1 shows the
design for the server side proxy.

Figure 6.1: HIP Server Side Proxy

In Figure 6.1, the outbound processing concerns the packets originated from the HIP
clients. When the HIP client initializes a connection to a legacy server, the client
asks the HIT of the legacy server from DNS in step 1. Once the HIP client receives
the HIT from the HIP DNS in step 2, the client triggers a base exchange to the HIT
in step 3. The proxy checks the HIT of incoming packets and �nds the IP address
of the legacy server matching to the HIT. Finally, the server side proxy terminates
the HIP/ESP tunnel and forwards the packets to the legacy server in step 4.

The inbound processing is much simpler than the outbound processing. In inbound
processing, the legacy server sends the plain IP packet to the server side proxy. Then,
the server side proxy looks up the database to �nd the destination HIT and sends
the packets to the HIP client over the ESP tunnel.

Chapter 7

Conclusion

Host Identity Protocol (HIP) o�ers host authentication, mobility support, data secu-
rity and IP address agility for the existing Internet architecture. However, deploying
HIP to Internet wide is a costy and long process. To ease the deployment, we pre-
sented a proxy-based approach of using HIP that avoids HIP deployment completely
at the client side.

The proof-of-concept prototype introduced in this thesis is based on HIPL imple-
mentation. The HIP proxy provides interoperability between legacy HIP-incapable
clients and HIP-capable servers. Using the proxy, an unmodi�ed legacy client can
establish HIP connectivity with a HIP-capable server through the proxy.

We showed initial performance measurements of the HIP-proxy prototype. The
implementation is immature enough and should be pro�led for optimal performance.
We expect the performance to improve radically when the prototype matures.

We discovered some future work items with the HIP proxy and referrals. The referral
problem is related to those protocols that encapsulate the addresses into application-
layer payloads. The study of the scenario with FTP shows that the communication
does not work when the FTP client is running on the IPv4 client in either passive
mode or active mode. As a straw-man solution, we suggested address-translation
also at the application layer.

In addition, we reviewed the compatibility with the normal �rewall access control
and the userspace IPSec extension. Both of them showed to be compatible with the
HIP proxy. We also studied the compatibility with UDP tunneling, Teredo and ICE
techniques.

Our design and implementation of the HIP proxy can be used to connect legacy
client networks to HIP-capable server networks to support incremental deployment
of HIP. In a way, the HIP proxy acts a "reverse VPN". To support normal VPN-
like connectivity, i.e. between HIP-capable clients and legacy servers, more work is
needed. When both client and server side proxy are available, HIP support can be
implemented completely at middleboxes.

48

Bibliography

[1] D. Eastlake 3rd. RFC 3110: RSA/SHA-1 SIGs and RSA KEYs in the Domain
Name System (DNS). Internet Engineering Task Force, 2001. http://www.

ietf.org/rfc/rfc3110.txt.

[2] A. Gurtov A. Pathak, M. Komu. Host Identity Protocol for Linux: HIPL gives
your Linux box a name, nov 2009.

[3] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. O'Reilly,
Sebastopol, California, October 2000.

[4] R. Braden. RFC 1122: Requirements for Internet Hosts - Communication
Layers. Internet Engineering Task Force, 1989. http://www.ietf.org/rfc/

rfc1122.txt.

[5] B. Carpenter. RFC 1958 Architectural Principles of the Internet, jun 1996.
http://www.ietf.org/rfc/rfc1958.txt.

[6] C. Perkins D. Johnson and J.Arkko. RFC 3775: Mobility Support in IPv6.
IETF, June 2004. http://www.ietf.org/rfc/rfc3775.txt.

[7] D. EastLake. RFC 2536: DSA KEYs and SIGs in the Domain Name System
(DNS). Internet Engineering Task Force, 1999. http://www.ietf.org/rfc/

rfc2536.txt.

[8] Sven Goldt, Sven van der Meer, Scott Burkett, and Matt Welsh. The Linux
Programmer's Guide, 2000.

[9] The HIPL Group. Host Identity Protocol for Linux. http://infrahip.hiit.fi.

[10] C. Huitema. RFC 4380: Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs). Internet Engineering Task Force, 2006. http:

//www.ietf.org/rfc/rfc4380.txt.

[11] M. Komu, T. Henderson, H. Tschofenig, and J. Melen. RFC 5770: Ba-
sic Host Identity Protocol (HIP) Extensions for Traversal of Network Ad-
dress Translators. Internet Engineering Task Force, February 2010. http:

//www.rfc-editor.org/authors/rfc5770.txt.

49

http://www.ietf.org/rfc/rfc3110.txt
http://www.ietf.org/rfc/rfc3110.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1958.txt
http://www.ietf.org/rfc/rfc3775.txt
http://www.ietf.org/rfc/rfc2536.txt
http://www.ietf.org/rfc/rfc2536.txt
http://infrahip.hiit.fi
http://www.ietf.org/rfc/rfc4380.txt
http://www.ietf.org/rfc/rfc4380.txt
http://www.rfc-editor.org/authors/rfc5770.txt
http://www.rfc-editor.org/authors/rfc5770.txt

BIBLIOGRAPHY 50

[12] Miika Komu and Janne Lindqvist. Leap-of-faith security is enough for ip mo-
bility. In Proceedings of the 6th IEEE on Consumer Communications and Net-
working Conference, 2009.

[13] J. Lindqvist. Establishing Host Identity Protocol Opportunistic Mode with TCP
Option. Internet Engineering Task Force, 2006. http://tools.ietf.org/id/

draft-lindqvist-hip-opportunistic-01.txt.

[14] Paul Mockapetris. RFC 1034: Domain Names � Concepts and Facilities. In-
ternet Engineering Task Force, November 1987. http://www.ietf.org/rfc/

rfc1034.txt.

[15] Teresa Finez Moral. Backwards Compatibility Experimentation with Host Iden-
tity Protocol and Legacy Software and Networks, December 2008. http:

//infrahip.hiit.fi/hipl/thesis_teresa_finez.pdf.

[16] P. Nikander. RFC 4423: Host Identity Protocol (HIP) Architecture. Internet
Engineering Task Force, 2006. http://www.ietf.org/rfc/rfc4423.txt.

[17] P. Nikander, P. Jokela, and T. Henderson. RFC 5201: Using the Encapsulat-
ing Security Payload (ESP) Transport Format with the Host Identity Protocol
(HIP). Internet Engineering Task Force, 2008. http://www.ietf.org/rfc/

rfc5201.txt.

[18] Croucher P. Communications and Networks. British Library publication, 2007.

[19] C. Vogt P. Nikander, T. Henderson and J. Arkko. RFC 5206: End-Host Mobility
and Multihoming with the Host Identity Protocol. Internet Engineering Task
Force, 2008. http://www.ietf.org/rfc/rfc5206.txt.

[20] J. Laganier P. Nikander. RFC 5205: Host Identity Protocol (HIP) Domain
Name System (DNS) Extension. Internet Engineering Task Force, 2008. http:
//www.ietf.org/rfc/rfc5205.txt.

[21] J. Melen P. Nikander. A Bound End-to-End Tunnel (BEET) mode for ESP Mode
with TCP Option. Internet Engineering Task Force, 2008. http://tools.ietf.
org/id/draft-nikander-esp-beet-mode-09.txt.

[22] Jon Postel. RFC 768: User Datagram Protocol. Internet Engineering Task
Force, August 1980. http://www.ietf.org/rfc/rfc768.txt.

[23] Jon Postel. RFC 793: Transport Control Protocol. Internet Engineering Task
Force, September 1981. http://www.ietf.org/rfc/rfc793.txt.

[24] P. Nikander R. Moskowitz. RFC 5202: Host Identity Protocol (HIP) Archi-
tecture. Internet Engineering Task Force, 2008. http://www.ietf.org/rfc/

rfc5202.txt.

[25] E. Rescorla. RFC 2631: Di�e-Hellman Key Agreement Method. IETF, June
1999. http://www.ietf.org/rfc/rfc2631.txt.

http://tools.ietf.org/id/draft-lindqvist-hip-opportunistic-01.txt
http://tools.ietf.org/id/draft-lindqvist-hip-opportunistic-01.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://infrahip.hiit.fi/hipl/thesis_teresa_finez.pdf
http://infrahip.hiit.fi/hipl/thesis_teresa_finez.pdf
http://www.ietf.org/rfc/rfc4423.txt
http://www.ietf.org/rfc/rfc5201.txt
http://www.ietf.org/rfc/rfc5201.txt
http://www.ietf.org/rfc/rfc5206.txt
http://www.ietf.org/rfc/rfc5205.txt
http://www.ietf.org/rfc/rfc5205.txt
http://tools.ietf.org/id/draft-nikander-esp-beet-mode-09.txt
http://tools.ietf.org/id/draft-nikander-esp-beet-mode-09.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc5202.txt
http://www.ietf.org/rfc/rfc5202.txt
http://www.ietf.org/rfc/rfc2631.txt

BIBLIOGRAPHY 51

[26] J. Rosenberg. RFC 5245: Interactive Connectivity Establishment (ICE): A
Protocol for Network Address Translator (NAT) Traversal for O�er/Answer
Protocols. Internet Engineering Task Force, 2010. http://www.ietf.org/rfc/
rfc5245.txt.

[27] Patrik Salmela. Host Identity Protocol proxy in a 3G system. Internet Engi-
neering Task Force, 2005. http://www.cs.hut.fi/~pmrg/publications/VHO/
2005/Salmela_HIPPS.pdf.

[28] Netlink S.a.s. Netlink - communication between kernel and user. //www.

netlink.it/.

[29] P. Srisuresh and M. Holdrege. RFC 2663: IP Network Address Translator
(NAT) Terminology and Considerations. Internet Engineering Task Force, 1999.
http://www.ietf.org/rfc/rfc2663.txt.

[30] W. Richard Stevens. TCP/IP Illustrated: the protocols. Addison-Wesley, Febru-
ary 1994.

[31] W. Richard Stevens. UNIX Network Programming, Volume 1: Networking
APIs: Sockets and XTI. Prentice Hall, Upper Saddle River, New Jersey, 2nd
edition, 1997.

[32] Andrew S Tanenbaum. Computer Networks, 2002.

[33] Sasu Tarkoma. Understanding Multi-layer Mobility. IGI Global, 1999.

http://www.ietf.org/rfc/rfc5245.txt
http://www.ietf.org/rfc/rfc5245.txt
http://www.cs.hut.fi/~pmrg/publications/VHO/2005/Salmela_HIPPS.pdf
http://www.cs.hut.fi/~pmrg/publications/VHO/2005/Salmela_HIPPS.pdf
//www.netlink.it/
//www.netlink.it/
http://www.ietf.org/rfc/rfc2663.txt

	Terms and Abbreviations
	Introduction
	Goals

	Background
	TCP/IP
	TCP/IP architecture
	IPv4 vs IPv6

	Host Identity Protocol
	A New Namespace
	A New Layer
	HIP packet structure
	HIP Base Exchange
	HIP opportunistic mode

	NAT Traversal
	Types of NATs
	Teredo
	Interactive Connectivity Establishment

	HIP and IPSec
	Bound End-to-End Tunnel (BEET)
	Internet Protocol Security (IPSec) with HIP

	Sockets API
	IPQ Library

	Design
	HIP Proxy
	Databases in HIP Proxy
	Four scenarios for HIP Proxy Design

	Architecture
	HIP Firewall State Machine
	Outbound Processing Model
	Inbound Processing Model

	HIP proxy and hipconf extension

	Implementation
	HIP Proxy
	Data Structure in HIP Proxy
	Databases in HIP Proxy

	HIP Firewall State Machine
	Packet Processing
	Interaction between the Components

	Outbound Processing
	Connection Establishment
	Packet Processing

	Inbound Processing
	Packet Processing

	Protocol Translation

	Analysis
	Testing Environment for Performance Evaluation
	Test Platforms
	Test Software and Configuration
	Test Procedure

	Results and Analysis of Performance Measurements
	TCP Throughput

	Issues for ICMP
	An Issue with FTP
	Compatibility Assurance with Other HIP Extensions
	HIP Firewall
	NAT Traversal
	HIP Opportunistic Mode Extensions for TCP
	HIP Userspace IPSec

	Comparison to Ericsson Implementation

	Future Work
	Client side HIP Proxy
	ICMP Protocols Support
	Referrals

	Server side HIP Proxy
	Architecture and Design

	Conclusion

